首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tuned mass dampers (TMDs) are used to control wind‐excited responses of high‐rise building as traditional vibration control devices. A TMD will have an excellent control effect when it is well tuned. However, a traditional passive TMD is sensitive to the frequency deviation; the mistuning in frequency and damping ratio both will decrease its control effect. In the previous research, an adaptive‐passive variable pendulum TMD (APVP‐TMD) is proposed, which can identify the TMD optimal frequency and retune itself through varying its pendulum length. However, it is found that the frequency variation will change the TMD damping ratio, and an unreasonable damping ratio will lead to a decrement in the robustness of a TMD. In this study, an adaptive‐passive eddy current pendulum TMD (APEC‐PTMD) is presented, which can retune the frequency through varying the pendulum length, and retune the damping ratio through adjusting the air gap between permanent magnets and conductive plates. An adjustable eddy current pendulum TMD (PTMD) is tested, and then, a single‐degree‐of‐freedom (SDOF) primary model with an APEC‐PTMD is built, and functions of frequency and damping ratio retuning are verified. The 76‐story wind‐sensitive benchmark model is proposed in the case study. The original model without uncertainty and ±15% stiffness uncertainty models are considered, and response control effects of different controllers are compared. Results show that because the APEC‐PTMD can both retune its frequency and damping ratio; it is more robust and effective than a passive TMD. It is also found that the APEC‐PTMD has a similar control effect with the active TMD, with little power consumption and better stability.  相似文献   

2.
Pendulum tuned mass damper (PTMD) is usually used to control the horizontal vibration of a tall building. However, traditional PTMD is highly sensitive to frequency deviation and difficult to adjust its frequency. In order to improve this problem of traditional PTMD and protect a tall building more effectively, a novel PTMD, called self‐adjustable variable pendulum tuned mass damper (SAVP‐TMD), is proposed in this paper. On the basis of the acceleration ratio between TMD and primary structure, the SAVP‐TMD can retune itself by varying the length of the pendulum according to the improved acceleration ratio‐based adjustment algorithm. PTMD and primary structural accelerations are obtained from two accelerometers respectively, and the acceleration ratio is calculated in a microcontroller, then, the stepper motor will adjust the pendulum under the guidance of the microcontroller under a specific harmonic excitation. The improved acceleration ratio‐based adjustment algorithm is proposed and compared to solve the nonconvergent retuning problem. The SAVP‐TMD can be regarded as a passive damper including a frequency adjustment device. A single‐degree‐of‐freedom structure model is used to verify the effectiveness of SAVP‐TMD through both experimental study and numerical simulation. In order to further verify the effect of SAVP‐TMD in the MDOF structure, a five‐storey structure coupled with an SAVP‐TMD is proposed as a case study. The results of experiment, simulation, and case study all show that SAVP‐TMD can retune itself to the primary structural dominant frequency robustly, and the retuned PTMD has a better vibration control effect than the mistuned one.  相似文献   

3.
Tuned mass dampers (TMDs) are employed to control the wind‐induced responses of tall buildings. In the meantime, TMD may have an impact on the correlation of wind‐induced responses and combination coefficients of equivalent static wind loads (ESWLs). First, the mass matrix and stiffness matrix were extracted in this paper in accordance with the structural analysis model of two high‐rise buildings, and on that basis, the wind‐induced vibration responses analysis model with and without TMD was established. Second, the synchronous multipoint wind tunnel test to measure the pressure was performed for two high‐rise buildings, and the time history of wind‐induced vibration responses with and without TMD was studied. Finally, the impact of TMD on the correlation of wind‐induced responses and combination coefficients of ESWLs was discussed. The results of two examples suggest that after the installation of TMD, the increase of ρxy was 2.1% to 35.0% and ρyz was 2.8% to 45.6% at all wind directions for Building 1, and the increase of ρxy was 3.9% to 17.1% and ρyz was 6.8% to 38.3% for Building 2. The combination coefficients of ESWLs of two buildings were 3% to 6% larger than that of the original structure. The conclusion of this paper can be referenced by the wind resistant design of high‐rise buildings with TMD.  相似文献   

4.
A particle tuned mass damper system is an integration of tuned mass damper and particle damper. The damping performance of such device is investigated by an aero‐elastic wind tunnel test on a benchmark high‐rise building. The robustness of the system is studied by comparing the damping performance to that of a traditional tuned mass damper, and the results show that the damper has excellent and steady wind‐induced vibration control effects. Meanwhile, the parameters (filling ratio, mass ratio, and mass ratio of the container to particles), which have great influence on the vibration reduction performance of the system, are also analyzed, and it is found that the particles filling ratio plays the most important role in deciding the damping effects of the dampers. There exists an optimum filling ratio and mass ratios in which the damper can reach the best damping state. Proper parameter selections can greatly improve the damping performance.  相似文献   

5.
在边界层风洞试验中应用气弹模型技术对深圳京基金融中心(KFT)进行风振控制试验,通过在KFT顶层设计安装悬臂式调谐质量阻尼器(TMD)对结构横风向风振响应进行控制,研究了不同TMD参数对控制效果的影响,并将试验结果和基于刚性模型的高频压力积分(HFPI)计算结果进行比较。结果表明:使用TMD能有效抑制KFT的风致振动响应,当TMD频率接近结构1阶自振频率时,减振效果最佳,且由于结构阻尼的存在,最佳TMD频率略小于结构自振频率;TMD阻尼比为3.86%和1.67%时,结构顶层加速度响应分别减小20%和15%,而TMD阻尼比不大于0.07%时则可能对结构风致振动响应的控制不起作用。  相似文献   

6.
以北京奥林匹克塔为工程背景,对其展开以舒适度为控制指标的黏滞阻尼减振性能研究.根据该多塔高耸结构的特点设计了连接桁架加腋的结构方案和不加腋的结构方案,比较分析两者之间动力特性的变化.并在连接桁架不加腋结构方案的基础上引入黏滞流体阻尼器(viscous fluid damper,VFD),对阻尼器的安装位置、装置数量等进...  相似文献   

7.
The wind‐induced vibrations of super tall buildings become excessive due to strong wind loads, super building height and high flexibility. Tuned mass dampers (TMDs) and tuned liquid column dampers (TLCDs) have been widely used to control vibrations for actual super tall buildings for decades. To fully use both the economic advantage of the TLCD system and the high efficiency of the TMD system, an innovative supplemental damping system including both TLCD and TMD and called combined tuned damper (CTD), which can substantially decrease the cost of the damper, was proposed to control the wind‐induced vibrations of tall buildings. The governing equations are generated for the motion of both the primary structure and the CTD and solved to anticipate the dynamic response of the CTD‐structure system. Moreover, an optimal design method of human comfort performance is proposed, in which the life cycle cost of the damper‐structure system is considered as the quantitative index of the performance. The life cycle cost includes the initial cost, the maintenance cost and the failure cost. The failure cost can be calculated using the vibration‐sensation rate model, which is based on the Japanese code AIJES‐V001‐2004. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Tuned mass dampers (TMDs) can be used as vibration control devices to improve the vibration performance of high‐rise buildings. The Shanghai Tower (SHT) is a 632‐m high landmark building in China, featuring a new eddy‐current TMD. Special protective mechanisms have been adopted to prevent excessively large amplitude of the TMD under extreme wind or earthquake loading scenarios. This paper presents a methodology for simulating behavior of the new eddy‐current TMD that features displacement‐dependent damping behavior. The TMD model was built into the SHT finite element model to perform frequency analysis and detailed response analyses under wind and earthquake loads. Furthermore, soil‐structure interaction (SSI) effects on wind and seismic load responses of the SHT model were investigated, as SSI has a significant impact on the vibration performance of high‐rise buildings. It was found that SSI has more significant effects on acceleration response for wind loads with a short return period than for wind loads with a long return period. Some of the acceleration responses with SSI effects exceed design limits of human comfort for wind loads with shorter return periods. As to the seismic analyses, it was found that SSI slightly reduces the displacement amplitude, the damping force, and the impact force of the TMD.  相似文献   

9.
This study presents an advanced experimental system, hardware‐in‐the‐loop (HIL), recently referred to as hybrid testing, to validate the effectiveness of a double‐decker tuned sloshing damper (TSD) system with screens applied to a recently constructed tall building. The HIL simulation facilitates a performance analysis of a combined structure‐damper system in which the nonlinear behavior of liquid motion in a TSD is physically modeled, whereas a building system under wind loads that behaves linearly is embedded virtually utilizing a computer model. The scaled model of the TSD is composed of a computer‐controlled system with a shaking table, sensors, and a real‐time communication link. The virtual building system on the computer communicates in real time with the hardware, that is, the physical model of TSD to evaluate on‐the‐fly the performance of a combined building‐TSD system. External excitation including random loading characteristics of winds, waves, or earthquakes can be implemented in HIL to observe the dynamics of the building‐damper system under a host of loading scenarios. An example of a recently completed tall reinforced concrete building with multiple TSDs placed side by side in double‐decker configuration under a suite of external loads and the proposed damping estimation procedure to evaluate the amount of auxiliary damping with TSD for ensuring the TSD design is presented. It examines the habitability of the building in winds and evaluates the effectiveness of the TSD system as well as the efficacy of the first HIL simulation for an actual tall building‐TSD system equipped with screens inside.  相似文献   

10.
The present study investigates the performance of fixed parameter control algorithms on wind‐excited high‐rise structures equipped with semi‐active tuned mass dampers of variable damping. It has been demonstrated that the algorithms that increase significantly the performance of the controlled structure do so at the expense of damper strokes. When the maximum damper strokes are capped to progressively lower limits, the efficacy of different algorithms, measured through a number of performance objectives, drastically alters totally changing the performance ranking of them and pointing out the need for an extensive study of the interplay between loading, control algorithm and allowable stroke within the design of semi‐active tuned mass dampers devices. 2015 The Authors. The Structural Design of Tall and Special Buildings published by John Wiley & Sons Ltd.  相似文献   

11.
In this paper, a multi‐objective optimization of a single tuned mass damper is proposed at the aim to control vibrations induced in building structures under low‐moderate earthquakes. The optimum design is carried out by considering both economic and performance criteria. The cost of the device is the economic objective that is assumed directly related to its mechanical parameters. At the aim to control the damage level and the behaviour of components and equipment, the ratio between the absolute accelerations of the protected structure and the unprotected one is assumed as the device performance. A multi‐objective optimization is then formulated, and Pareto optimum solutions are achieved by the Non‐dominated Sorting Genetic Algorithm in its second version. Finally, a sensitivity analysis of the optimum solution with respect to some input data is carried out. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The effectiveness of a class of nonlinear tuned mass dampers (TMDs) in suppressing across-wind structure oscillations was examined through a wind tunnel test. The nonlinear TMD employed a wire rope spring to replace both the spring and the damper required in a typical system. First, a single degree of freedom aeroelastic stick model of a slender structure with a square cross-section was tested under different levels of damping. The measurements obtained from the tests were used to determine the root-mean-square (RMS) of the lift coefficient and other aerodynamic parameters. In the second phase of testing, the nonlinear TMD system was attached near the tip of the aeroelastic model. The response reduction achieved by adding the TMD was considerable and was quantitatively expressed in terms of an equivalent viscous damping. A comparison between the nonlinear TMD and an equivalent optimized linear TMD was made. Probability-based procedures were developed to estimate the equivalent damping provided by the nonlinear TMD. The estimated damping was compared with that obtained experimentally to evaluate the accuracy of the prediction method.  相似文献   

13.
Herein, by a case study on a 5‐MW wind turbine system developed by Nanjing University of Aeronautics and Astronautics, the wind field simulation and wind‐induced vibration characteristics of wind turbine tower‐blade coupled systems is analyzed. First, the blade‐nacelle‐tower‐basis integrated finite element model with centrifugal forces induced by rotational blades is established. Then, based on a harmony superposition method and the modified blade element‐momentum theory, the fluctuating wind field of tower‐blade coupled systems is simulated, which considers wind shear effect, tower shadow effect, rotational effect, blade‐tower dynamic and model interaction effects. Finally, the wind‐induced dynamic responses and wind vibration coefficients of the wind turbine tower‐blade coupled structure are discussed through the ‘consistent coupled method’ previously proposed by us. The results indicate that the wind‐induced responses of a large wind turbine tower‐blade coupled structure present complicated modal responses and multimode coupling effect. Additionally, the rotational effect would amplify aerodynamic loads on blades with high frequency, wind‐induced dynamic responses and wind vibration coefficients of wind turbine tower. The centrifugal force effect could also amplify natural vibration frequency of the tower‐blade coupled system and reduce the wind‐induced dynamic responses and wind vibration coefficients of wind turbine tower. The research could contribute to wind‐resistant design of structure for a large‐scale wind turbine tower‐blade system. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Passive energy dissipation devices have been used around the world to mitigate the response of structures under dynamic excitations, such as wind or seismic loading. The use of tuned mass dampers (TMD) in tall and slender buildings to reduce unwanted responses has proved to be very effective. The main purpose of this work is to study the structural behavior of a 115‐m‐height slender monument fitted with TMDs subjected to simulated wind and seismic loading. Turbulent wind forces were calculated based on samples of turbulent wind speed simulated with an auto regressive and moving average (ARMA) model. Ground motions compatible with a seismic site spectrum were also simulated. An optimization approach is suggested to determine the parameters of the TMDs that reduce the structural response to the maximum. The effectiveness of the TMDs for reducing the structural response of the monument is discussed in detail, and the use of optimally tuned TMDs is emphasized.  相似文献   

15.
The concept of shared tuned mass damper (STMD) for twin towers linked by a sky corridor using flexible joints is proposed in this paper. The analytical expressions of the transform functions and random earthquake responses of the flexibly connected structures are derived using a three‐degrees‐of‐freedom model system. The seismic reduction mechanism of the STMD is revealed using comparative analysis between the structures with STMD and those connected using a viscoelastic damper. The effect of the nondimensional parameters such as the frequency ratio of the two primary structures, mass ratio, tuning frequency ratio of the corridor, and damping ratio of the passive control devices on the structural seismic response is investigated. Optimum parametric analysis is performed using the principle of minimizing the displacements of both towers, and the optimal parameter formulas are established. Numerical analysis is conducted to verify the control effectiveness of the connected multi‐degree‐of‐freedom system subjected to the El Centro earthquake ground motion. The results show that the earthquake responses of the towers can be effectively reduced if the parameters of the flexible connecting elements are appropriately selected for a certain corridor mass. Moreover, a remarkable seismic reduction effect can be achieved if the towers have similar dynamic properties.  相似文献   

16.
In this paper, the influence of mass ratio on the vibration control effects of tuned mass damper (TMD) on a super high‐rise building has been investigated. A 1/45 scaled model of a super high‐rise building was constructed, and the TMD with the mass ratio of 0.01, 0.02, and 0.03, respectively, was suspended on the top. Shaking table test and the corresponding numerical simulation were carried out to make a further understanding of the damping mechanism. The structural performance with or without TMD was comparatively studied. The results show that larger mass ratio can improve the control effects under frequent earthquake, but the control effects increase little with the increase of mass ratio under rare earthquake due to structural damages, accompanied by stiffness degradation and nonlinear behavior of the main structure. In addition, some suggestions on the mass ratio selection are also proposed to generalize its applications.  相似文献   

17.
The synchronous multipoint scanning system technique in wind tunnel tests and random vibration theory method were used to analyze the wind‐induced torsion vibration of some irregularly shaped super high‐rise buildings in downtowns. The torsion vibration modes and the spectra of torsion wind load were studied, and the proportions of mean wind torsion, inertia torsion and the mass eccentricity torsion caused by horizontal inertia forces are discussed. The following conclusions can be drawn. First, the third and fourth modes have torsion vibration shapes, and their frequencies are in the high‐energy area of the spectra of the torsion wind load; the third and fourth modes are included in the resonant component of the spectra of the top torsion angle of the building, and the third mode is dominant. Second, the torsion stiffness is weak in the high stories of the building, so the inertia torsion is dominant, whereas the torsion stiffness is strong in the low stories; the mean wind torsion is dominant. The proportion of the mass eccentricity torsion moment caused by horizontal inertia forces is small. Finally, the wind‐induced torsion moment at a 90° wind angle is the largest, whereas the torsion eccentricity is 46% of the radius of gyration and is much greater than the mass eccentricity; thus, the wind‐induced torsion should be considered. The wind‐induced torsion vibration of the building is sensitive to wind directions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
To study the damage characteristics and to evaluate the overall seismic performance of reinforced concrete mega‐frame structures, a shaking table test of a 1/25 scaled model with a rooftop tuned mass damper (TMD) is performed. The maximum deformation and acceleration responses are measured. The dynamic behavior and the damping effect with and without TMD are compared. The results indicate that the mega‐frame structure has excellent seismic performance and the TMD device has a significant vibration reduction effect. A finite element (FE) model simulating the scaled model is also developed, and the numerical and experimental results are compared to provide a better understanding of the overall structural behavior in particular those related to the dynamic characteristics and damping effect. Upon verification of the FE model, other important structural behavior can also be predicted by the FE analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
An active mass damper/driver (AMD) control system with a single mass has such problems as the excessive weight of the auxiliary mass and the insufficient capacity of its driving equipment. It is necessary to work through multiple subsystems to achieve effective control of high‐rise buildings. However, the time‐delay effect in each subsystem impedes its application in engineering practices. In the paper, an augmented system based on a zero‐order hold is proposed for discrete‐time systems with multiple time delays, and then the system is designed according to the compensation strategy using a classical linear quadratic regulator algorithm. After that, the sample data obtained from the zero‐order hold compensation controller is trained through a Takagi–Sugeno fuzzy neural network method. Finally, a new simplified compensation controller is designed to further shorten the time consuming calculation on the premise of guaranteeing its control effects and parameters. To verify its effectiveness, an AMD system in a high‐rise building is regarded as an example, and the proposed methodology is also applied to an experiment of a four‐story frame. Both results demonstrate that the method can enhance the performance of an AMD system with multiple time delays.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号