首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article a novel soft variable structure control method is proposed to reduce the settling time of liner time‐invariant multi‐input systems with constrained inputs. The method is a generalized pole placement technique which extends the desired pole locations to radial pole paths to reduce settling time while satisfying input constraints. The control signal obtained by this method is soft and is therefore suited to industrial applications. The paper provides a test for the stability of the control system based on the multivariable circle criterion and the Kalman‐Yakubovich‐Popov lemma. Simulation results where the method is applied to an aviation example, and comparison with pole placement, demonstrate how the method significantly increases the speed of response in spite of the input constraints.  相似文献   

2.
This article proposes a model predictive control scheme based on a non-minimal state-space (NMSS) structure. Such a combination yields a continuous-time state-space model predictive control system that permits hard constraints to be imposed on both plant input and output variables, whilst using NMSS output-feedback without the need for an observer. A comparison between the NMSS and observer-based approaches using Monte Carlo uncertainty analysis shows that the former design is considerably less sensitive to plant-model mismatch than the latter. Through simulation studies, the article also investigates the role of the implementation filter in noise attenuation, disturbance rejection and robustness of the closed-loop predictive control system. The results show that the filter poles become a subset of the closed-loop poles and this provides a straightforward method of tuning the closed-loop performance to achieve a reasonable balance between speed of response, disturbance rejection, measurement noise attenuation and robustness.  相似文献   

3.
Practical control problems are always subject to plant state and/or input constraints, which make designing an effective controller a challenging task. This paper introduces a novel virtual control approach to handling the presence of hard constraints in control systems by utilizing virtual mechanisms in the form of nonlinear springs and dampers. The augmented virtual mechanisms are to assist in better shaping the closed‐loop responses, especially when operating near the constrained boundary. A linear quadratic regulator based model predictive control method is utilized to develop stabilizing controllers that not only achieve desired system performance, but also meet the imposed hard constraints. The basic idea is to dramatically increase control penalty by way of tuning the spring and damper effect when the constrained state/input response is close to its hard constraint. The proposed method is applied to a balancing ball problem to demonstrate its applicability and effectiveness, and the simulation results validate the proposed concept.  相似文献   

4.
A novel three‐dimensional fault‐tolerant control guidance law is proposed for interception of maneuvering targets in the presence of external disturbances, actuator failures, and control input constraints. The input‐to‐state stability (ISS) method is introduced to design the fault‐tolerant control guidance law to guarantee robust tracking of a maneuvering target. Then, a saturated fault‐tolerant control guidance law is constructed using a modified saturation function to ensure the resulting control signal will never incur input constraints, and the convergence to a small neighborhood of origin is ensured in theory. Simulation results show that the presented approach is effective in achieving a successful interception against target maneuvers, external disturbances, actuator failures, and control input constraints.  相似文献   

5.
A performance oriented multi-loop approach to the adaptive robust tracking control of one-degree-of-freedom mechanical systems with input saturation, state constraints, parametric uncertainties and input disturbances is presented. The control system contains three loops. In the outer loop, constrained optimization algorithms are developed to generate a replanned trajectory on-line at a low sampling rate so that the converging speed of the overall system response to the desired target is maximized while not causing input saturation and the violation of state constraints. In the inner loop, a constrained adaptive robust control (ARC) law is synthesized and implemented at high sampling rate to achieve the required robust tracking performances with respect to the replanned trajectory even with various types of uncertainties and input saturation. In the middle loop, a set-membership identification (SMI) algorithm is implemented to obtain a tighter estimate of the upper bound of the inertia so that more aggressive replanned trajectory could be used to further improve the overall system response speed. Interaction of the three loops is explicitly characterized by a set of inequalities that the design variables of each loop have to satisfy. It is theoretically shown that the resulting closed-loop system can track feasible desired trajectories with a guaranteed converging time and steady-state tracking accuracy without violating the state constraints. Experiments have been carried out on a linear motor driven industrial positioning system to compare the proposed multi-loop constrained ARC algorithm with some of the traditional control algorithms. Comparative experimental results obtained confirm the superior performance of the proposed algorithm over existing ones.  相似文献   

6.
This paper presents an optimal tracking performance of multiple‐input multiple‐output (MIMO) networked control systems (NCSs) with quantization and bandwidth constraints. In this study, we simultaneously consider the encoding‐decoding, quantization and bandwidth of communication channel. The optimal tracking performance of NCSs is obtained by spectral factorization technique and partial fraction. The obtained results demonstrate that the optimal tracking performance is influenced by the nonminimum phase zeros and unstable poles as well as their directions for a given plant. In addition, it is shown that characteristics of reference signal, encoding‐decoding, quantization, and bandwidth of communication channel are also closely related to tracking performance. Finally, the efficiency of proposed tracking performance is verified by typical examples.  相似文献   

7.
The best tracking problem for a single‐input‐single‐output (SISO) networked control system with communication constraints is studied in this paper. The tracking performance is measured by the energy of the error signal between the output of the plant and the reference signal. The communication constraints under consideration are finite bandwidth and networked induced‐delay. Explicit expressions of the minimal tracking error have been obtained for networked control systems with or without communication constraints. It is shown that the best tracking performance dependents on the nonminimum phase zeros, and unstable poles of the given plant, as well as the bandwidth and networked induced‐delay. It is also shown that, if the constraints of the communication channel do not exist, the best tracking performance reduces to the existing tracking performance of the control system without communication constraints. The result shows how the bandwidth and networked induced‐delay of a communication channel may fundamentally constrain a control system's tracking capability. Some typical examples are given to illustrate the theoretical results.  相似文献   

8.
The problem of active fault‐tolerant tracking control with control input and system output constraints is studied for a class of discrete‐time systems subject to sensor faults. A time‐varying fault‐tolerant observer is first developed to estimate the real system state from the faulty sensor output and control input signals. Then by using the estimated state at each time step, a model predictive control (MPC)‐based fault‐tolerant tracking control scheme is presented to guarantee the desired tracking performance and the given input and output constraints on the faulty system. In comparison with many existing fault‐tolerant MPC methods, its main contribution is that the proposed state estimator is designed by the simple and online numerical computation to tolerate the possible sensor faults, so that the regular MPC algorithm without fault information can be adopted for the online calculation of fault‐tolerant control signal. The potential recursive infeasibility and computational complexity due to the faults are avoided in the scheme. Additionally, the closed‐loop stability of the post‐fault system is discussed. Simulative results of an electric throttle control system verify the effectiveness of the proposed method.  相似文献   

9.
This paper is concerned with the output feedback control problem for spacecraft rendezvous subject to target angular velocity uncertainty and controller uncertainty, external disturbance and input constraint. A general full-order dynamic output feedback (DOF) controller is proposed. As a stepping-stone, the H performance requirement, poles and input constraint are analysed separately via linear matrix inequalities (LMIs). Then, with the obtained results, the controller design problem is cast into a convex problem subject to a set of LMI constraints through a critical change of controller variables. Furthermore, when the system states are all available, a reduced sufficient condition of the non-fragile state feedback controller is given. Compared with existing results, the designed controller has overcome the disadvantage of strictly proper DOF controller, where the initial value of the control input is zero. Besides, the constraint on poles placement is relaxed. A numerical simulation is performed to verify the effectiveness of the proposed method.  相似文献   

10.
A global quasi‐sliding mode control (GQSMC) scheme is introduced to ensure zigzag motion with a smaller bound than that offered by Gao's method and to provide disturbance rejection throughout the entire response in discrete time. The design of an augmented forcing function is followed by three conditions in discrete time extended from global sliding mode control (GSMC) in continuous time. Furthermore, we adopt a switching gain, which is auto‐tuned as a function of sliding surface s(k), such that chattering phenomena can be considerably alleviated during the steady‐state, significantly reducing switching control applied to the plant. The proposed GQSMC scheme can provide more advantages such as an even distribution of the control input throughout the entire response and an improvement in the accuracy and speed of the desired performance, guaranteeing a quasi‐sliding mode throughout the entire response. In addition, we also consider the input disturbance rejection according to the norm‐bounded exogenous signal. Results from both the simulation and the experiments are reported. The results further verify that we can use the global sliding surface to curtail reaching the phase stage.  相似文献   

11.
In this paper the coprime‐factorized model predictive functional control for single‐input single‐output processes with an arbitrary number of unstable poles is presented. The predictive functional control algorithm gives a framework for designing the control for a wide range of processes. The main idea in the case of unstable poles is based on the prediction of the process output based on the coprime‐factorized process model. The robust stability of the proposed control algorithm is also discussed, using the small‐gain theorem, which provides a sufficient condition for stability. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

12.
This paper presents stability results for discrete-time model-based predictive control system subject to an input amplitude constraint. It is shown that the input amplitude constrained control system may provide a stable control system in the sense of BIBO when the system to be controlled is of a class of the system poles which consist of multiple integrators and a stable polynomial. The solution of Diophantine equations and their properties are addressed. Simulation study is also carried out and it is shown that the output of the system may converge to the reference signal for certain degree of constraints.  相似文献   

13.
This paper presents a novel approach for image‐based visual servoing (IBVS) of a robotic system by considering the constraints in the case when the camera intrinsic and extrinsic parameters are uncalibrated and the position parameters of the features in 3‐D space are unknown. Based on the model predictive control method, the robotic system's input and output constraints, such as visibility constraints and actuators limitations, can be explicitly taken into account. Most of the constrained IBVS controllers use the traditional image Jacobian matrix, the proposed IBVS scheme is developed by using the depth‐independent interaction matrix. The unknown parameters can appear linearly in the prediction model and they can be estimated by the identification algorithm effectively. In addition, the model predictive control determines the optimal control input and updates the estimated parameters together with the prediction model. The proposed approach can simultaneously handle system constraints, unknown camera parameters and depth parameters. Both the visual positioning and tracking tasks can be achieved desired performances. Simulation results based on a 2‐DOF planar robot manipulator for both the eye‐in‐hand and eye‐to‐hand camera configurations are used to demonstrate the effectiveness of the proposed method.  相似文献   

14.
The focus of this paper is on the design and simulation of robust tracking control for an air-breathing hypersonic vehicle (AHV), which is affected by high nonlinearity, uncertain parameters and input constraints. The linearisation method is employed for the longitudinal AHV model about a specific trim condition, and then considering the additive uncertainties of three parameters, the linearised model is just in the form of affine parameter dependence. From this point, the linear parameter-varying method is applied to design the desired controller. The poles for the closed-loop system of the linearised model are placed into a desired vertical strip, and the quadratic stability of the closed-loop system is guaranteed. Input constraints of the AHV are addressed by additional linear matrix inequalities. Finally, the designed controller is evaluated on the nonlinear AHV model and simulation results demonstrate excellent tracking performance with good robustness.  相似文献   

15.
In this paper, sufficient conditions for robust output feedback controller design for systems with ellipsoidal parametric uncertainty are given in terms of solutions to a set of linear matrix inequalities. A polynomial method is employed to design a fixed‐order controller that assigns closed‐loop poles within a given region of the complex plane and that satisfies an H performance specification. The main feature of the proposed method is that it can be extended easily for control‐oriented uncertainty set shaping using a standard input design approach. Consequently, the results can be extended to joint robust control/input design procedure whose controller structure and performance specifications are translated into the requirements on the input signal spectrum used in system identification. This way, model uncertainty set can be tuned for the robust control design procedure. The simulation results show the effectiveness of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
This paper proposes a dynamic surface control (DSC)–based robust adaptive control scheme for a class of semi‐strict feedback systems with full‐state and input constraints. In the control scheme, a constraint transformation method is employed to prevent the transgression of the full‐state constraints. Specifically, the state constraints are firstly represented as the surface error constraints, then, an error transformation is introduced to convert the constrained surface errors into new equivalent variables without constraints. By ensuring the boundedness of the transformed variables, the violation of the state constraints can be prevented. Moreover, in order to obtain magnitude limited virtual control signal for the recursive design, the saturations are incorporated into the control law. The auxiliary design systems are constructed to analyze the effects of the introduced saturations and the input constraints. Rigorous theoretical analysis demonstrates that the proposed control law can guarantee all the closed‐loop signals are uniformly ultimately bounded, the tracking error converges to a small neighborhood of origin, and the full‐state constraints are not violated. Compared with the existing results, the key advantages of the proposed control scheme include: (i) the utilization of the constraint transformation can handle both time‐varying symmetric and asymmetric state constraints and static ones in a unified framework; (ii) the incorporation of the saturations permits the removal of a feasibility analysis step and avoids solving the constrained optimization problem; and (iii) the “explosion of complexity” in traditional backstepping design is avoided by using the DSC technique. Simulations are finally given to confirm the effectiveness of the proposed approach.  相似文献   

17.
A novel fuzzy‐neuron intelligent coordination control method for a unit power plant is proposed in this paper. Based on the complementarity between a fuzzy controller and a neuron model‐free controller, a fuzzy‐neuron compound control method for Single‐In‐Single‐Out (SISO) systems is presented to enhance the robustness and precision of the control system. In this new intelligent control system, the fuzzy logic controller is used to speed up the transient response, and the adaptive neuron controller is used to eliminate the steady state error of the system. For the multivariable control system, the multivariable controlled plant is decoupled statically, and then the fuzzy‐neuron intelligent controller is used in each input‐output path of the decoupled plant. To the complex unit power plant, the structure of this new intelligent coordination controller is very simple and the simulation test results show that good performances such as strong robustness and adaptability, etc. are obtained. One of the outstanding advantages is that the proposed method can separate the controller design procedure and control signals from the plant model. It can be used in practice very conveniently.  相似文献   

18.
In this article, input power, as opposed to the usual input amplitude, constraints are introduced in the context of intermittent control. They are shown to result in a combination of quadratic optimisation and quadratic constraints. The main motivation for considering input power constraints is its similarity with semi-active control. Such methods are commonly used to provide damping in mechanical systems and structures. It is shown that semi-active control can be re-expressed and generalised as control with power constraints and can thus be implemented as power-constrained intermittent control. The method is illustrated using simulations of resonant mechanical systems and the constrained nature of the power flow is represented using power-phase-plane plots. We believe the approach we present will be useful for the control design of both semi-active and low-power vibration suppression systems.  相似文献   

19.
This paper addresses the problem of robust stabilization for uncertain systems subject to input saturation and nonhomogeneous Markovian jumps, where the uncertainties are assumed to be norm bounded and the transition probabilities are time‐varying and unknown. By expressing the saturated linear feedback law on a convex hull of a group of auxiliary linear feedback laws and the time‐varying transition probabilities inside a polytope, we establish conditions under which the closed‐loop system is asymptotically stable. On the basis of these conditions, the problem of designing the state feedback gains for achieving fast transience response with a guaranteed size of the domain of attraction is formulated and solved as a constrained optimization problem with linear matrix inequality constraints. The results are then illustrated by numerical examples including the application to a DC motor speed control example. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
The optimal tracking problem for multiple‐input multiple‐output linear‐time‐invariant discrete‐time systems with communication constraints in the feedback path is studied in this paper. The tracking performance is measured by the energy of the error signal between the output of the plant and the reference signal. The objective is to obtain an optimal tracking performance, attainable by all possible stabilizing compensators. It is shown that the optimal tracking performance consists of two parts, one depends on the nonminimum phase zeros and zero direction of the given plant, as well as the reference input signal direction, and the other depends on the nonminimum phase zeros, unstable poles, and pole direction of the given plant, as well as the bandwidth and additive white Gaussian noise of the communication channel. It is also shown that, if the constraint of the communication channel does not exist, the optimal tracking performance reduces to the existing tracking performance of the control system without communication constraints. A typical example is given to illustrate the theoretical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号