共查询到20条相似文献,搜索用时 15 毫秒
1.
Werner Bernzen 《Journal of Intelligent and Robotic Systems》1999,24(1):69-88
When using robots for heavy loads and huge operating ranges, elastic deformations of the links have to be taken into account during modeling and controller design. Whereas for conventional rigid multilink industrial robots modeling can schematically be done by standard techniques, it is a massive problem to obtain an accurate analytic model for multilink flexible robots. But an accurate analytic model is essential for most modern controller design techniques, and modeling errors can lead to instability of the controlled system due to spillover since the eigenvalues of the system are only slightly damped. A new approach to active damping control for flexible robots is presented in this paper where the actuators act like virtual spring-damper-systems. As the spring-damper-element is a passive energy dissipative device, it will never destabilize the system and thus the control concept will be very insensitive to modeling errors. Basically, the two parameters, spring stiffness and damping constant of this system, are arbitrary and model independent. To satisfy performance requirements they are adjusted using knowledge of the system model. The more it is known about the system model, the better these parameters may be adjusted. The new input of the controlled system is a virtual variation of the spring base. The paper illustrates this technique with the help of a simple and easy to model one link flexible robot which is also available as a real laboratory testbed. 相似文献
2.
Using a structure preserving observer, a dynamic output controller is proposed for a class of port‐Hamiltonian systems. The core of this method is based on the notion of contractive port‐Hamiltonian systems. The proposed method utilizes an extended form of IDA‐PBC (interconnection and damping assignment passivity‐based control), a well‐known controller design method for port‐Hamiltonian systems and paves the way for using IDA‐PBC in output control design of challenging control objectives, such as output tracking for underactuated mechanical systems. In the line of output control design, a useful separation principle for a class of port‐Hamiltonian systems is achieved, which is valuable in the field of nonlinear systems. Some simulations on magnetic levitation and ball on wheel testbeds show the potency and applicability of the proposed method. 相似文献
3.
Matin Jafarian Ewoud Vos Claudio De Persis Jacquelien Scherpen Arjan van der Schaft 《国际强度与非线性控制杂志
》2016,26(15):3344-3362
》2016,26(15):3344-3362
This paper presents the results of formation keeping control of a group of nonholonomic wheeled robots within the port‐Hamiltonian framework and in the presence of matched input disturbances. Two scenarios on the internal damping of the dynamics of the robots are considered: strictly output passive and loss less robots. For strictly output passive robots, the distributed formation keeping controllers drive the robots towards a desired formation, while internal‐model‐based controllers locally compensate the harmonic input disturbance for each of the robots. Moreover, the effect of constant input disturbances is studied considering internal‐model‐based controllers. For lossless robots, results on formation keeping control are presented. Simulation results illustrate the effectiveness of the approach. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
4.
Chengxing Lv Jian Chen Haisheng Yu Jieru Chi Zhibo Yang 《Asian journal of control》2023,25(5):3903-3919
A novel robust state error port controlled Hamiltonian (PCH) trajectory tracking controller of an unmanned surface vessel (USV) subject to time-varying disturbances, dynamic uncertainties and control input saturation is presented. The proposed control scheme combines the advantages of the high robustness and energy minimization of the state error PCH approach and the approximation capability of adaptive radial basis function neural networks (RBFNNs). Adaptive RBFNNs are used to the time-varying disturbances of the environment and unknown dynamics uncertainties of the USV model. The state error PCH control approach is designed such that the system can optimize energy consumption, and the state error PCH technique makes the designed trajectory tracking controller be easy to implement in practice. To handle the effect of the control input saturation, a Gaussian error function model is employed. It has been demonstrated that the proposed approach can maintain the USV's trajectory at the desired trajectory, while the closed-loop control system can guarantee the uniformly ultimate boundedness. The energy consumption model of the USV is constructed to reveal to the energy consumption. Simulation results demonstrate the effectiveness of the proposed controller. 相似文献
5.
Contact Conditions for Cylindrical,Prismatic, and Screw Joints in Flexible Multibody Systems 总被引:1,自引:0,他引:1
This paper focuses on the modeling of the contact conditionsassociated with cylindrical, prismatic, and screw joints in flexiblemultibody systems. In the classical formulation these joints aredeveloped for rigid bodies, and kinematic constraints are enforcedbetween the kinematic variables of the two bodies. These constraintsexpress the conditions for relative translation and rotation of the twobodies along and about a body-fixed axis, and imply the relative slidingand rotation of the two bodies which remain in constant contact witheach other. However, these kinematic constraints no longer implyrelative sliding with contact when one of the bodies is flexible. Toremedy this situation, a sliding joint and a sliding screwjoint are proposed that involves kinematic constraints at theinstantaneous point of contact between the sliding bodies. For slidingscrew joints, additional constraints are added on the relative rotationof the contacting bodies. Various numerical examples are presented thatdemonstrate the dramatically different behavior of cylindrical,prismatic, or screw joints and of the proposed sliding and sliding screwjoints in the presence of elastic bodies, and the usefulness of theseconstraint elements in the modeling of complex mechanical systems. 相似文献
6.
B. De Jager 《Control Engineering Practice》1993,1(6):1009-1018
The paper discusses a tracking control system and shows with simulation and experimental results that extended friction models can be successfully incorporated in a computed-torque-like adaptive control scheme. The friction model used includes Coulomb, viscous, and periodic friction with sense of direction dependent parameters. To get small tracking errors, adaptation of the friction model parameters is necessary. The tracking performance is an order of magnitude better than with PD control. The robustness of the scheme for parameter inaccuracies is sufficient, owing to the adaptation, but the controller gains are limited due to stability problems caused by unmodeled dynamics. 相似文献
7.
This paper investigates modelling and adaptive tracking control problems for flexible joint robots subjected to random disturbances. A stochastic flexible joint robot model is given by introducing random noises reasonably. Under some weaker assumptions, a new controller is constructed by exploiting adaptive dynamic surface control technique. It is proved that the mean square of the tracking error can be made arbitrarily small by choosing appropriate design parameters. A mechanics model is provided in the simulation to show the effectiveness of the presented theory. 相似文献
8.
A novel time‐varying adaptive controller at the torque level is proposed to simultaneously solve the stabilization and the tracking problem of unicycle mobile robots with unknown dynamic parameters. The idea underlying the controller is intuitively simple: rather than switching between two different types of controllers according to the a priori knowledge of the reference velocities being persistently exciting or not, a new time‐varying signal is introduced to make the single controller capable of adaptively, smoothly, and gradually converting between stabilizer and tracker depending on the instantaneous and past information of the reference velocities. Our control development is based on Lyapunov's direct method and the backstepping technique. Adaptive control techniques are used to deal with parametric uncertainties. The outstanding feature of our controller is computationally simple due to its full use of the existing results on stabilization and tracking control for unicycle robots. With our approach, robots can globally follow a large class of paths including a straight line, a circle, a path approaching a set‐point, or just a set‐point using a single controller. Simulation results for a unicycle‐type mobile robot are provided to illustrate the effectiveness of the proposed controller. 相似文献
9.
本文研究了用多机器人系统完成柔性物体的跟踪的控制问题,为了简化对这一十分复杂问题的表述,用一个柔性长杆代替了一般形状的柔性物体,在对象的一些力学性质被确立之后,提出了一个递阶控制策略。 相似文献
10.
Given a control system and a desired property, an abstracted system is a reduced system that preserves the property of interest while ignoring modeling detail. In previous work, abstractions of linear and nonlinear control systems were considered while preserving reachability properties. In this paper, we consider the abstraction problem for Hamiltonian control systems, where, in addition to the property of interest we also preserve the Hamiltonian structure of the control system. We show how the Hamiltonian structure of control systems can be exploited to simplify the abstraction process. We then focus on local accessibility preserving abstractions, and provide conditions under which local accessibility properties of the abstracted Hamiltonian system are equivalent to the local accessibility properties of the original Hamiltonian control system. 相似文献
11.
Shuwen Pan 《Asian journal of control》2014,16(1):198-208
In this paper, a new adaptive sliding mode control is proposed to control nonlinear systems with parametric uncertainties and matched and unmatched external disturbances. The proposed method first combines immersion and invariance (I&I) adaptive scheme with sliding mode control (SMC), which preserves the advantages of the two methods. The proposed method is different from the approach of combining the backstepping adaptive scheme and sliding mode control in the parameter estimation law, which allows for prescribed dynamics to be assigned to the estimation error and is easier to tune. Finally, the method is applied to control a class of power systems, and simulation results show the advantages of the proposed method. 相似文献
12.
C. M. Verrelli 《Asian journal of control》2015,17(6):2417-2426
The aim of this brief is to show how stability proofs in the time‐domain involving suitable quadratic‐integral Lyapunov‐like functions can be derived in the repetitive control design scenario in the case of uncertain period for the reference signals/disturbances to be tracked/rejected. Even though the presented arguments are rather general, we apply them to the generalization of the proportional–integral–derivative (PID)‐like learning control that has been recently designed. The use of the presented results in multi‐link robot synchronization tasks provides simple and intuitive solutions to as yet unsolved problems. 相似文献
13.
We study the local asymptotic stability of undirected formations of single‐integrator and double‐integrator modeled agents based on interagent distance control. First, we show that n‐dimensional undirected formations of single‐integrator modeled agents are locally asymptotically stable under a gradient control law. The stability analysis in this paper reveals that the local asymptotic stability does not require the infinitesimal rigidity of the formations. Second, on the basis of the topological equivalence of a dissipative Hamiltonian system and a gradient system, we show that the local asymptotic stability of undirected formations of double‐integrator modeled agents in n‐dimensional space is achieved under a gradient‐like control law. Simulation results support the validity of the stability analysis. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
14.
To get the best features of both deliberative and reactive controllers, present mobile robot control architectures are designed to accommodate both types of controller. However, these architectures are still very rigidly structured thus deliberative modules are always assigned to the same role as a high-level planner or sequencer while low-level reactive modules are still the ones directly interacting with the robot environment. Furthermore, within these architectures communication and interface between modules are if not strongly established, they are very complex thus making them unsuitable for simple robotic systems. Our idea in this paper is to present a control architecture that is flexible in the sense that it can easily integrate both reactive and deliberative modules but not necessarily restricting the role of each type of controller. Communication between modules is through simple arbitration schemes while interface is by connecting a common communication line between modules and simple read and/or write access of data objects. On top of these features, the proposed control architecture is scalable and exhibits graceful degradation when some of the modules fail, similar to the present mobile robot architectures. Our idea has enabled our four-legged robot to walk autonomously in a structured uneven terrain. 相似文献
15.
Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots 总被引:1,自引:0,他引:1
In this paper, we investigate the output consensus problem of tracking a desired trajectory for a class of systems consisting of multiple nonlinear subsystems with intrinsic mismatched unknown parameters. The subsystems are allowed to have non-identical dynamics, whereas with similar structures and the same yet arbitrary system order. And the communication status among the subsystems can be represented by a directed graph. Different from the traditional centralized tracking control problem, only a subset of the subsystems can obtain the desired trajectory information directly. A distributed adaptive control approach based on backstepping technique is proposed. By introducing the estimates to account for the parametric uncertainties of the desired trajectory and its neighbors’ dynamics into the local controller of each subsystem, information exchanges of online parameter estimates and local synchronization errors among linked subsystems can be avoided. It is proved that the boundedness of all closed-loop signals and the asymptotically consensus tracking for all the subsystems’ outputs are ensured. A numerical example is illustrated to show the effectiveness of the proposed control scheme. Moreover, the design strategy is successfully applied to solve a formation control problem for multiple nonholonomic mobile robots. 相似文献
16.
本文针对多个非完整移动机器人对静止或运动目标的环绕追踪问题进行研究.每个机器人仅通过自身和其相邻的机器人的位置与方向信息以及所追踪的目标的位置信息来协调其运动.首先,提出了一种基于动态反馈线性化方法的分布式控制策略,并引入一个控制机器人之间相对角间距的非线性函数,控制机器人间的相对角间距.使多个机器人能够以期望的与目标之间的相对距离、环绕速度和机器人之间的相对角间距对目标进行追踪.然后,利用Lyapunov工具对控制算法进行了渐近稳定性和收敛性分析.最后构建了多移动机器人实验平台,进行了数值仿真和实验验证,仿真和实验的运行结果表明了所提出算法的有效性. 相似文献
17.
18.
In this paper, a three-loop control strategy is applied to each link of a two-link flexible robot. In the first loop feedback linearization is applied to the rigid and motor dynamics. The second loop consists of a simple proportional-derivative (PD) control law for accurate rigid body angle tracking. The third loop uses endpoint accelearation feedback to account for flexure effects. The overall scheme is relatively simple in order to facilitate easy implementation; experimental results are provided to verify the effectiveness of the developed schemes. 相似文献
19.
Jorge Silva João Sequeira Cristina Santos 《International journal of systems science》2017,48(1):209-224
This paper proposes fundamentals for stability and success of a global system composed by a mobile robot, a real environment and a navigation architecture with time constraints. Contraction theory is a typical framework that provides tools and properties to prove the stability and convergence of the global system to a unique fixed point that identifies the mission success. A stability indicator based on the combination contraction property is developed to identify the mission success as a stability measure. The architecture is fully designed through C1 nonlinear dynamical systems and feedthrough maps, which makes it amenable for contraction analysis. Experiments in a realistic and uncontrolled environment are realised to verify if inherent perturbations of the sensory information and of the environment affect the stability and success of the global system. 相似文献
20.
为了解决非仿射非线性多智能体系统在给定时间区间上一致性完全跟踪问题,基于迭代学习控制方法设计一种分布式一致性跟踪控制算法.首先,由引入的虚拟领导者与所有跟随者组成多智能体系统的通信拓扑,其中虚拟领导者的作用是提供期望轨迹.然后,在只有部分跟随者能够获得领导者信息的条件下,利用每个跟随者及其邻居的跟踪误差构造每个跟随者的迭代学习一致性跟踪控制器.同时采用中值定理将非仿射非线性多智能体系统转化仿射形式,并基于压缩映射方法证明所提算法的收敛性,给出算法的收敛条件.理论分析表明,在智能体的非线性函数未知情况下,利用所提算法可以使非仿射非线性多智能体系统在给定时间区间上随迭代次数增加逐次实现一致性完全跟踪.最后,通过仿真算例进一步验证所提算法的有效性. 相似文献