共查询到20条相似文献,搜索用时 10 毫秒
1.
Using a structure preserving observer, a dynamic output controller is proposed for a class of port‐Hamiltonian systems. The core of this method is based on the notion of contractive port‐Hamiltonian systems. The proposed method utilizes an extended form of IDA‐PBC (interconnection and damping assignment passivity‐based control), a well‐known controller design method for port‐Hamiltonian systems and paves the way for using IDA‐PBC in output control design of challenging control objectives, such as output tracking for underactuated mechanical systems. In the line of output control design, a useful separation principle for a class of port‐Hamiltonian systems is achieved, which is valuable in the field of nonlinear systems. Some simulations on magnetic levitation and ball on wheel testbeds show the potency and applicability of the proposed method. 相似文献
2.
Using structure properties of dissipative Hamiltonian systems, this paper investigates the parameterization problem of Hinfty controllers for such systems. A family of H∞ controllers with full information is first obtained by interconnecting an H∞ controller with a generalized zero‐energy‐gradient (ZEG) detectable, free generalized Hamiltonian system. Then, a family of H∞ controllers with partial information is presented in terms of the solution to an inequality only in 2n independent variables (twice as many as the one used to characterize the state feedback) and without imposing an additional cascade condition. Both of the parameterization methods avoid solving Hamilton–Jacobi–Issacs equations (or inequalities), and thus the proposed controllers are relatively simple in form and easy in operation. Numerical experiments show the effectiveness and feasibility of the proposed methods. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
3.
Input‐to‐state stability of stochastic port‐Hamiltonian systems using stochastic generalized canonical transformations 下载免费PDF全文
Satoshi Satoh 《国际强度与非线性控制杂志
》2017,27(17):3862-3885
》2017,27(17):3862-3885
As a practically important class of nonlinear stochastic systems, this paper considers stochastic port‐Hamiltonian systems (SPHSs) and investigates the stochastic input‐to‐state stability (SISS) property of a class of SPHSs. We clarify necessary conditions for the closed‐loop system of an SPHS to be SISS. Moreover, we provide a systematic construction of both the SISS controller and Lyapunov function so that the proposed necessary conditions hold. In the main results, the stochastic generalized canonical transformation plays a key role. The stochastic generalized canonical transformation technique enables to design both coordinate transformation and feedback controller with preserving the SPHS structure of the closed‐loop system. Consequently, the main theorem guarantees that the closed‐loop system obtained by the proposed method is SISS against both deterministic disturbance and stochastic noise. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
4.
This paper considers the receding horizon tracking control of the unicycle‐type robot subject to coupled input constraint based on virtual structure. The tracking position of the follower is considered to be a virtual structure point with respect to a Frenet–Serret frame fixed on the leader, and the desired control input of the follower not only depend on the input of the leader but also the separation vector. Firstly, a sufficient input condition for the leader robot is given to enable the follower to track its desired position while satisfying its inputs constraint. Secondly, receding horizon control scheme is designed for the follower robot, in which the recursive feasibility is guaranteed by developing a diamond‐shaped positively invariant terminal‐state region and its corresponding controller. Finally, simulation results are provided to verify the effectiveness of the scheme proposed. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
5.
K.D. Do 《Robotics and Autonomous Systems》2013,61(8):775-784
This paper presents a design of bounded controllers with a predetermined bound for global path tracking control of unicycle-type mobile robots at the torque level. A new one-step ahead backstepping method is first introduced. The heading angle and linear velocity of the robots are then considered as immediate controls to force the position of the robots to globally and asymptotically track its reference path. These immediate controls are designed based on the one-step ahead backstepping method to yield bounded control laws. Next, the one-step ahead backstepping method is applied again to design bounded control torques of the robots with a pre-specified bound. The proposed control design ensures global asymptotical and local exponential convergence of the position and orientation tracking errors to zero, and bounded torques driving the robots. Experimental results on a Khepera mobile robot verify the proposed control controller. 相似文献
6.
This paper investigates modelling and adaptive tracking control problems for flexible joint robots subjected to random disturbances. A stochastic flexible joint robot model is given by introducing random noises reasonably. Under some weaker assumptions, a new controller is constructed by exploiting adaptive dynamic surface control technique. It is proved that the mean square of the tracking error can be made arbitrarily small by choosing appropriate design parameters. A mechanics model is provided in the simulation to show the effectiveness of the presented theory. 相似文献
7.
The by‐now standard formulation of interconnection and damping assignment passivity‐based control (for input‐affine systems) proposes the solution of a partial differential equation (PDE) that defines the assignable energy functions and computes the control using the input matrix pseudo‐inverse. However, in its original formulation—a more general design procedure was proposed, which was essentially abandoned because of the difficulties in solving the PDE. In this note, a new family of interconnection and damping assignment passivity‐based controls is proposed by extending this method in the following directions: (i) It allows the desired interconnection and damping matrices to depend on the control signal, giving the possibility to shape the PDE to ensure its solvability; (ii) the PDE directly generates the control signal that have, in general, simpler expressions; and (iii) it is applicable for general nonlinear systems possibly not affine in the control. The technique is illustrated with three examples, including the well‐known boost power converter for which it yields a simple, high‐performance controller. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
8.
The control problem for flexible‐multilink robots carrying large payloads is revisited. A set of nonlinear approximate equations describing the payload‐dominated dynamics of the flexible plant is used in conjunction with the passivity property satisfied by a suitably defined modified input–output pair for the system, to derive a globally asymptotically stable controller together with its adaptive counterpart. Experimental results involving a specially designed 3‐degree‐of‐freedom planar arm with two flexible links, demonstrate their ability to combine end‐point tracking with simultaneous active suppression of the vibrations. © 2000 John Wiley & Sons, Inc. 相似文献
9.
Ricardo G. Sanfelice J.J. Benjamin Biemond Nathan van de Wouw W.P.Maurice H. Heemels 《国际强度与非线性控制杂志
》2014,24(11):1585-1608
》2014,24(11):1585-1608
We study the problem of designing state‐feedback controllers to track time‐varying state trajectories that may exhibit jumps. Both plants and controllers considered are modeled as hybrid dynamical systems, which are systems with both continuous and discrete dynamics, given in terms of a flow set, a flow map, a jump set, and a jump map. Using recently developed tools for the study of stability in hybrid systems, we recast the tracking problem as the task of asymptotically stabilizing a set, the tracking set, and derive conditions for the design of state‐feedback tracking controllers with the property that the jump times of the plant coincide with those of the given reference trajectories. The resulting tracking controllers guarantee that solutions of the plant starting close to the reference trajectory stay close to it and that the difference between each solution of the controlled plant and the reference trajectory converges to zero asymptotically. Constructive conditions for tracking control design in terms of LMIs are proposed for a class of hybrid systems with linear maps and input‐triggered jumps. The results are illustrated by various examples. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
10.
In this paper, the authors address the tracking problem for non‐holonomic systems in chained form with target signals that may exponentially decay to zero. By introducing a time‐varying co‐ordinate transformation and using the cascade‐design approach, smooth time‐varying controllers are constructed, which render the tracking‐error dynamics globally ??‐exponentially stable. The result shows that the popular condition of persistent excitation or not converging to zero for the reference signals is not necessary even for the globally ??‐exponential tracking of the chained‐form system. The effectiveness of the proposed controller is validated by simulation of two benchmark mechanical systems under non‐holonomic constraints. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
11.
Asymptotic moving object tracking with trajectory tracking extension: A homography‐based approach 下载免费PDF全文
In this paper, a homography‐based visual servo controller is developed for a rigid body to track a moving object in three‐dimensional space with a fixed relative pose. Specifically, a monocular camera is mounted on the rigid body, and the desired relative pose is expressed by a pre‐recorded reference image. Homography is exploited to obtain the orientation and scaled position for controller design. Considering the unknown moving object's velocities and distance information, a continuous nonlinear visual controller is developed using the robust integral of the signum of the error methodology. To facilitate the stability analysis, the system uncertainties regarding the moving object's velocities and distance information are divided into the error‐unrelated system uncertainties and the error‐related system uncertainties. After that, the upper bounds of the error‐related system uncertainties are derived with composited system errors. An asymptotic tracking of the leading object is proved based on the Lyapunov methods and the derived upper bounds. In addition, the proposed controller is extended to address the trajectory tracking problem. Simulation results validate the effectiveness of the proposed approach. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
12.
PD control with on-line gravity compensation for robots with elastic joints: Theory and experiments 总被引:1,自引:0,他引:1
A proportional-derivative (PD) control with on-line gravity compensation is proposed for regulation tasks of robot manipulators with elastic joints. The work extends a previous PD control with constant gravity compensation at the desired configuration. The control law requires measuring only position and velocity on the motor side of the elastic joints, while the on-line gravity compensation torque uses a biased measure of the motor position. It is proved via a Lyapunov argument that the control law globally asymptotically stabilizes the desired robot configuration. A simulation study on a two-joint arm reveals the better performance that can be obtained with the new scheme as compared to the case of constant gravity compensation. Moreover, the proposed controller is experimentally tested on an eight-joint cable-driven robot manipulator, in combination with a point-to-point interpolating trajectory, showing the practical advantages of the on-line compensation. 相似文献
13.
14.
Griselda I. Zamora‐Gmez Arturo Zavala‐Río Emilio Vzquez‐Ramírez Fernando Reyes Víctor Santibez 《国际强度与非线性控制杂志
》2020,30(10):3923-3944
》2020,30(10):3923-3944
The closed‐loop analysis of a recently proposed continuous scheme for the finite‐time or exponential tracking control of constrained‐input mechanical systems is reformulated under the consideration of an input‐matching bounded perturbation term. This is motivated by the poor number of works devoted to support the so‐cited argument claiming that continuous finite‐time controllers are more robust than asymptotical (infinite‐time) ones under uncertainties and the limitations of their results. We achieve to analytically prove that, for a perturbation term with sufficiently small bound, the considered tracking continuous control scheme leads the closed‐loop error variable trajectories to get into an origin‐centered ball whose radius becomes smaller in the finite‐time convergence case, entailing smaller posttransient variations than in the exponential case. Moreover, this is shown to be achieved for any initial condition, avoiding to restrain any of the parameters involved in the control design, and under the suitable consideration of the nonautonomous nature of the closed loop. The study is further corroborated through experimental tests on a multi‐degree‐of‐freedom robotic manipulator, which do not only confirm the analytical result but also explore the scope or limitations of its conclusions under adverse perturbation conditions. 相似文献
15.
Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots 总被引:1,自引:0,他引:1
In this paper, we investigate the output consensus problem of tracking a desired trajectory for a class of systems consisting of multiple nonlinear subsystems with intrinsic mismatched unknown parameters. The subsystems are allowed to have non-identical dynamics, whereas with similar structures and the same yet arbitrary system order. And the communication status among the subsystems can be represented by a directed graph. Different from the traditional centralized tracking control problem, only a subset of the subsystems can obtain the desired trajectory information directly. A distributed adaptive control approach based on backstepping technique is proposed. By introducing the estimates to account for the parametric uncertainties of the desired trajectory and its neighbors’ dynamics into the local controller of each subsystem, information exchanges of online parameter estimates and local synchronization errors among linked subsystems can be avoided. It is proved that the boundedness of all closed-loop signals and the asymptotically consensus tracking for all the subsystems’ outputs are ensured. A numerical example is illustrated to show the effectiveness of the proposed control scheme. Moreover, the design strategy is successfully applied to solve a formation control problem for multiple nonholonomic mobile robots. 相似文献
16.
A robust tracking control is proposed for the fractional‐order systems (FOSs) to achieve a tracking response with no overshoot, even in the presence of a class of disturbances. The control proposed makes use of a newly designed integral sliding mode technique for FOSs, which is capable of rejecting the bounded disturbances acting through the input channel. The proposed integral sliding mode control design has two components: a nominal control component and a discontinuous control component. The overshoot in the system response is avoided by the nominal control designed with the use of Moore's eigenstructure assignment algorithm. The sliding mode technique is used for the design of discontinuous part of the control that imparts the desired robustness properties. 相似文献
17.
This paper presents a new sporadic control approach to the tracking problem for MIMO closed‐loop systems. An LTI sampled data plant with unmeasurable state affected by external unknown disturbances is considered. The plant is interconnected to an event‐based digital dynamic output‐feedback controller via a network. Both the external reference and the unknown disturbance are assumed to be generated as the free output response of unstable LTI systems. The main feature of the new event‐driven communication logic (CL) is that it works without the strict requirement of a state vector available for measurement. The purpose of the CL is to reduce as much as possible the number of triggered messages along the feedback and feedforward paths with respect to periodic sampling, still preserving internal stability and without appreciably degrading the control system tracking capability. The proposed event‐driven CL is composed of a sensor CL (SCL) and of a controller CL (CCL). The SCL is based on the computation of a quadratic functional of the tracking error and of a corresponding suitably computed time‐varying threshold: a network message from the sensor to the controller is triggered only if the functional equals or exceeds the current value of the threshold. The CCL is directly driven by the SCL: the dynamic output controller sends a feedforward message to the plant only if it has received a message from the sensor at the previous sampled instant. Formulation of the controller in discrete‐time form facilitates its implementation and provides a minimum inter‐event time given by the sampling period. An example taken from the related literature shows the effectiveness of the new approach. The focus of this paper is on the stability and performance loss problems relative to the sporadic nature of the control law. Other topics such as network delay or packets dropout are not considered. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
18.
In this paper we concerned with PID controllers for rigid robots whose integral term is driven by a saturation function. We introduce a new tuning procedure with particular conditions that have to be satisfied at each joint. We found that this novel approach relaxes Tomei's condition on the proportional gains which also relaxes conditions on integral gains. We show, through simulations, that important performance improvement is achieved with respect to previous tuning procedures. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society 相似文献
19.
This article focuses on the adaptive tracking control problem for a class of interconnected nonlinear stochastic systems under full‐state constraints based on the hybrid threshold strategy. Different from the existing works, we propose a novel pre‐constrained tracking control algorithm to deal with the full‐state constraint problem. First, a novel nonlinear transformation function and a new coordinate transformation are developed to constrain state variables, which can directly cope with asymmetric state constraints. Second, the hybrid threshold strategy is constructed to provide a reasonable way in balancing system performance and communication constraints. By the use of dynamic surface control technique and neural network approximate technique, a smooth pre‐constrained tracking controller with adaptive laws is designed for the interconnected nonlinear stochastic systems. Moreover, based on the Lyapunov stability theory, it is proved that all state variables are successfully pre‐constrained within asymmetric boundaries. Finally, a simulation example is presented to verify the effectiveness of proposed control algorithm. 相似文献
20.
Robust consensus tracking for a class of heterogeneous second‐order nonlinear multi‐agent systems 下载免费PDF全文
This paper deals with the robust consensus tracking problem for a class of heterogeneous second‐order nonlinear multi‐agent systems with bounded external disturbances. First, a distributed adaptive control law is proposed based on the relative position and velocity information. It is shown that for any connected undirected communication graph, the proposed control law solves the robust consensus tracking problem. Then, by introducing a novel distributed observer and employing backstepping design techniques, a distributed adaptive control law is constructed based only on the relative position information. Compared with the existing results, the proposed adaptive consensus protocols are in a distributed fashion, and the nonlinear functions are not required to satisfy any globally Lipschitz or Lipschitz‐like condition. Numerical examples are given to verify our proposed protocols. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献