首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binders have been considered to play a key role in realizing high‐energy‐density lithium–sulfur batteries. However, the accompanying problems of limited conductivity and inferior affinity of soluble polysulfide intermediates bring down their comprehensive performance for practical applications. Herein, the synthesis of a novel double‐chain polymer network (DCP) binder by polymerizing 4,4′‐biphenyldisulfonic acid connected pyrrole monomer onto viscous sodium carboxymethyl cellulose matrix, yielding a primary crystal structure is reported. Consequently, the resulted binder enables superior rate performance from 0.2 C (1326.9 mAh g?1) to 4 C (701.4 mAh g?1). Moreover, a high sulfur loading of 9.8 mg cm?2 and a low electrolyte/sulfur ratio (5:1, µL mg?1) are achieved, exhibiting a high area capacity of 9.2 mAh cm?2. In situ X‐ray diffraction analysis is conducted to monitor the structural modifications of the cathode, confirming the occurrence of sulfur reduction/recrystallization during charge–discharge process. In addition, in situ UV–vis measurements demonstrate that DCP binder impedes the polysulfide migration, thereby giving rise to high capacity retention for 400 cycles.  相似文献   

2.
Main obstacles from the shuttle effect and slow conversion rate of soluble polysulfide compromise the sulfur utilization and cycling life for lithium sulfur (Li–S) batteries. In pursuit of a practically viable high performance Li–S battery, a separator configuration (CoS2/HPGC/interlayer) as efficient polysulfide trapping barrier is reported. This configuration endows great advantages, particularly enhanced conductivity, promoted polysulfide trapping capability, accelerated sulfur electrochemistry, when using the functional interlayer for Li–S cells. Attributed to the above merits, such cell shows excellent cyclability, with a capacity of 846 mAh g?1 after 250 cycles corresponding to a high capacity retention of 80.2% at 0.2 C, and 519 mAh g?1 after 500 cycles at 1C (1C = 1675 mA g?1). In addition, the optimized separator exhibits a high initial areal capacity of 4.293 mAh cm?2 at 0.1C. Moreover, with CoS2/HPGC/interlayer, the sulfur cell enables a low self‐discharge rate with a very high capacity retention of 97.1%. This work presents a structural engineering of the separator toward suppressing the dissolution of soluble Li2Sn moieties and simultaneously promoting the sulfur conversion kinetics, thus achieving durable and high capacity Li–S batteries.  相似文献   

3.
The primary challenge with lithium–sulfur battery research is the design of sulfur cathodes that exhibit high electrochemical efficiency and stability while keeping the sulfur content and loading high and the electrolyte/sulfur ratio low. With a systematic investigation, a novel graphene/cotton‐carbon cathode is presented here that enables sulfur loading and content as high as 46 mg cm?2 and 70 wt% with an electrolyte/sulfur ratio of as low as only 5. The graphene/cotton‐carbon cathodes deliver peak capacities of 926 and 765 mA h g?1, respectively, at C/10 and C/5 rates, which translate into high areal, gravimetric, and volumetric capacities of, respectively, 43 and 35 mA h cm?2, 648 and 536 mA h g?1, and 1067 and 881 mA h cm?3 with a stable cyclability. They also exhibit superior cell‐storage capability with 95% capacity‐retention, a low self‐discharge constant of just 0.0012 per day, and stable poststorage cyclability after storing over a long period of six months. This work demonstrates a viable approach to develop lithium–sulfur batteries with practical energy densities exceeding that of lithium‐ion batteries.  相似文献   

4.
Fast lithium ion transport with a high current density is critical for thick sulfur cathodes, stemming mainly from the difficulties in creating effective lithium ion pathways in high sulfur content electrodes. To develop a high‐rate cathode for lithium–sulfur (Li–S) batteries, extenuation of the lithium ion diffusion barrier in thick electrodes is potentially straightforward. Here, a phyllosilicate material with a large interlamellar distance is demonstrated in high‐rate cathodes as high sulfur loading. The interlayer space (≈1.396 nm) incorporated into a low lithium ion diffusion barrier (0.155 eV) significantly facilitates lithium ion diffusion within the entire sulfur cathode, and gives rise to remarkable nearly sulfur loading‐independent cell performances. When combined with 80% sulfur contents, the electrodes achieve a high capacity of 865 mAh g?1 at 1 mA cm?2 and a retention of 345 mAh g?1 at a high discharging/charging rate of 15 mA cm?2, with a sulfur loading up to 4 mg. This strategy represents a major advance in high‐rate Li–S batteries via the construction of fast ions transfer paths toward real‐life applications, and contributes to the research community for the fundamental mechanism study of loading‐independent electrode systems.  相似文献   

5.
Despite the low competitive cost and high theoretical capacity of lithium–sulfur battery, its practical application is severely hindered by fast capacity fading and limited capacity retention mainly caused by the polysulfide dissolution problem. Here, this paper reports a new strategy of using thiol‐terminated polymeric matrices to prevent polysulfide dissolution, which exhibits an initial capacity of 829.1 mAh g?1, and the exceptionally stable capacity retention of ≈84% at 1 C after 200 cycles, and excellent cycling stability with a low mean decay rate of 0.048% after 600 cycles. Significantly, in situ UV/vis spectroscopy analysis of the electrolyte upon battery cycling is performed to verify the function of preventing polysulfide dissolution by means of strongly anchoring discharge products of lithium sulphides. Moreover, density functional theory calculations reveal that the breakage of the linear sulfur chains results in the less soluble short‐chain polysulfides due to the formation of the covalently crosslinked discharge products, which avoids the production of soluble long‐chain polysulfide and minimizes the shuttle effect. These results exhibit an alternative for the stabilization of the electrochemical performance of lithium–sulfur batteries.  相似文献   

6.
Owing to the high theoretical specific capacity (1675 mA h g?1) and low cost, lithium–sulfur (Li–S) batteries offer advantages for next‐generation energy storage. However, the polysulfide dissolution and low electronic conductivity of sulfur cathodes limit the practical application of Li–S batteries. To address such issues, well‐designed yolk–shelled carbon@Fe3O4 (YSC@Fe3O4) nanoboxes as highly efficient sulfur hosts for Li–S batteries are reported here. With both physical entrapment by carbon shells and strong chemical interaction with Fe3O4 cores, this unique architecture immobilizes the active material and inhibits diffusion of the polysulfide intermediates. Moreover, due to their high conductivity, the carbon shells and the polar Fe3O4 cores facilitate fast electron/ion transport and promote continuous reactivation of the active material during the charge/discharge process, resulting in improved electrochemical utilization and reversibility. With these merits, the S/YSC@Fe3O4 cathodes support high sulfur content (80 wt%) and loading (5.5 mg cm?2) and deliver high specific capacity, excellent rate capacity, and long cycling stability. This work provides a new perspective to design a carbon/metal‐oxide‐based yolk–shelled framework as a high sulfur‐loading host for advanced Li–S batteries with superior electrochemical properties.  相似文献   

7.
Developing high‐energy‐density lithium–sulfur (Li–S) batteries relies on the design of electrode substrates that can host a high sulfur loading and still attain high electrochemical utilization. Herein, a new bifunctional cathode substrate configured with boron‐carbide nanowires in situ grown on carbon nanofibers (B4C@CNF) is established through a facile catalyst‐assisted process. The B4C nanowires acting as chemical‐anchoring centers provide strong polysulfide adsorptivity, as validated by experimental data and first‐principle calculations. Meanwhile, the catalytic effect of B4C also accelerates the redox kinetics of polysulfide conversion, contributing to enhanced rate capability. As a result, a remarkable capacity retention of 80% after 500 cycles as well as stable cyclability at 4C rate is accomplished with the cells employing B4C@CNF as a cathode substrate for sulfur. Moreover, the B4C@CNF substrate enables the cathode to achieve both high sulfur content (70 wt%) and sulfur loading (10.3 mg cm?2), delivering a superb areal capacity of 9 mAh cm?2. Additionally, Li–S pouch cells fabricated with the B4C@CNF substrate are able to host a high sulfur mass of 200 mg per cathode and deliver a high discharge capacity of 125 mAh after 50 cycles.  相似文献   

8.
The reversible electrochemical transformation from lithium (Li) and sulfur (S) into Li2S through multielectron reactions can be utilized in secondary Li–S batteries with very high energy density. However, both the low Coulombic efficiency and severe capacity degradation limits the full utilization of active sulfur, which hinders the practical applications of Li–S battery system. The present study reports a ternary‐layered separator with a macroporous polypropylene (PP) matrix layer, graphene oxide (GO) barrier layer, and Nafion retarding layer as the separator for Li–S batteries with high Coulombic efficiency and superior cyclic stability. In the ternary‐layered separator, ultrathin layer of GO (0.0032 mg cm?2, estimated to be around 40 layers) blocks the macropores of PP matrix, and a dense ion selective Nafion layer with a very low loading amount of 0.05 mg cm?2 is attached as a retarding layer to suppress the crossover of sulfur‐containing species. The ternary‐layered separators are effective in improving the initial capacity and the Coulombic efficiency of Li–S cells from 969 to 1057 mAh g?1, and from 80% to over 95% with an LiNO3‐free electrolyte, respectively. The capacity degradation is reduced from 0.34% to 0.18% per cycle within 200 cycles when the PP separator is replaced by the ternary‐layered separators. This work provides the rational design strategy for multifunctional separators at cell scale to effective utilizing of active sulfur and retarding of polysulfides, which offers the possibility of high energy density Li–S cells with long cycling life.  相似文献   

9.
A high lithium conductive MoS2/Celgard composite separator is reported as efficient polysulfides barrier in Li–S batteries. Significantly, thanks to the high density of lithium ions on MoS2 surface, this composite separator shows high lithium conductivity, fast lithium diffusion, and facile lithium transference. When used in Li–S batteries, the separator is proven to be highly efficient for depressing polysulfides shuttle, leading to high and long cycle stability. With 65% of sulfur loading, the device with MoS2/Celgard separator delivers an initial capacity of 808 mAh g?1 and a substantial capacity of 401 mAh g?1 after 600 cycles, corresponding to only 0.083% of capacity decay per cycle that is comparable to the best reported result so far. In addition, the Coulombic efficiency remains more than 99.5% during all 600 cycles, disclosing an efficient ionic sieve preventing polysulfides migration to the anode while having negligible influence on Li+ ions transfer across the separator. The strategy demonstrated in this work will open the door toward developing efficient separators with flexible 2D materials beyond graphene for energy‐storage devices.  相似文献   

10.
To realize practical lithium–sulfur batteries (LSBs) with long cycling life, designing cathode hosts with a high specific surface area (SSA) is recognized as an efficient way to trap the soluble polysulfides. However, it is also blamed for diminishing the volumetric energy density and being susceptible to side reactions. Herein, polyethylenimine intercalated graphite oxide (PEI‐GO) with a low SSA of 4.6 m2 g?1 and enlarged interlayer spacing of 13 Å is proposed as a superior sulfur host, which enables homogeneous distribution of high sulfur content (73%) and facilitates Li+ transfer in thick sulfur electrode. LSBs with a moderate sulfur loading (3.4 mg S cm?2) achieve an initial capacity of 1157 and 668 mAh g?1 after 500 cycles at 0.5 C. Even when the sulfur loading is increased to 7.3 mg cm?2, the electrode still delivers a high areal capacity of 4.7 mAh cm?2 (641 mAh g?1) after 200 cycles at 0.2 C. The excellent electrochemical properties of PEI‐GO are mainly attributed to the homogeneous distribution of sulfur in PEI‐GO and the strong chemical interactions between polysulfides and amine groups, which can mitigate the loss of active phases and contribute to the better cycling stability.  相似文献   

11.
Lithium–sulfur (Li–S) batteries have been considered as one of the most promising energy storage systems owing to their high theoretical capacity and energy density. However, their commercial applications are obstructed by sluggish reaction kinetics and rapid capacity degradation mainly caused by polysulfide shuttling. Herein, the first attempt to utilize a highly conductive metal–organic framework (MOF) of Ni3(HITP)2 graphene analogue as the sulfur host material to trap and transform polysulfides for high‐performance Li–S batteries is made. Besides, the traditional conductive additive acetylene black is replaced by carbon nanotubes to construct matrix conduction networks for triggering the rate and cycling performance of the active cathode. As a result, the S@Ni3(HITP)2 with sulfur content of 65.5 wt% shows excellent sulfur utilization, rate performance, and cyclic durability. It delivers a high initial capacity of 1302.9 mAh g?1 and good capacity retention of 848.9 mAh g?1 after 100 cycles at 0.2 C. Highly reversible discharge capacities of 807.4 and 629.6 mAh g?1 are obtained at 0.5 and 1 C for 150 and 300 cycles, respectively. Such kinds of pristine MOFs with high conductivity and abundant polar sites reveal broad promising prospect for application in the field of high‐performance Li–S batteries.  相似文献   

12.
Nanostructured carbon materials are extensively applied as host materials to improve the utilization rate and reversibility of elemental sulfur in lithium sulfur (Li-S) batteries. Here, S, N-codoped carbon capsules (SNCCs) with microporous walls, prepared by a self-assembly process, are used as the sulfur host material in Li-S batteries. The SNCCs provide plenty of micron-sized cavities to accommodate a high S loading, which are sealed by thick walls with microsized entrance to efficently suppress the shuttle effect of lithium polysulfides. As the cathode in Li-S battery, the SNCCs/sulfur composite with a sulfur mass loading of 70 wt% exhibits a high average reversible capacity of 1220 and 1116 mA h g?1 at 0.5C and 1C, respectively, superior rate performance (905 and 605 mAh g?1 at 5C and 10C, respectively) and excellent cycling stability (capacity fading rate of 0.03% per cycle in 500 cycles). Even at a high sulfur areal loading of 7.3 mg/cm2, the SNCCs/0.7S electrode still deliver a high initial discharge capacity of 838 mAh g?1 and keeps at 730 mAh g?1 after 100 cycles, corresponding to an extraordinary capacity retention of 87.1%, showing an excellent cyclic stability. The outstanding electrochemical performance is associated with the unique capsule structure with abundant volume, microsized entrance and high conductivity. Our results provides a new strategy to prepare highly stable sulfur-carbon composites for the application in Li-S batteries.  相似文献   

13.
The polysulfide shuttle effect and sluggish reaction kinetics hamper the practical applications of lithium–sulfur (Li–S) batteries. Incorporating a functional interlayer to trapping and binding polysulfides has been found effective to block polysulfide migration. Furthermore, surface chemistry at soluble polysulfides/electrolyte interface is a crucial step for Li–S battery in which stable cycling depends on adsorption and reutilization of blocked polysulfides in the electrolyte. A multifunctional catalytic interface composed of niobium nitride/N‐doped graphene (NbN/NG) along the soluble polysulfides/electrolyte is designed and constructed to regulate corresponding interface chemical reaction, which can afford long‐range electron transfer surfaces, numerous strong chemisorption, and catalytic sites in a working lithium–sulfur battery. Both experimental and theoretical calculation results suggest that a new catalytic interface enabled by metal‐like NbN with superb electrocatalysis anchored on NG is highly effective in regulating the blocked polysulfide redox reaction and tailoring the Li2S nucleation–growth–decomposition process. Therefore, the Li–S batteries with multifunctional NbN/NG barrier exhibit excellent rate performance (621.2 mAh g?1 at 3 C) and high stable cycling life (81.5% capacity retention after 400 cycles). This work provides new insights to promote Li–S batteries via multifunctional catalytic interface engineering.  相似文献   

14.
In this work, hydroxyl‐functionalized Mo2C‐based MXene nanosheets are synthesized by facilely removing the Sn layer of Mo2SnC. The hydroxyl‐functionalized surface of Mo2C suppresses the shuttle effect of lithium polysulfides (LiPSs) through strong interaction between Mo atoms on the MXenes surface and LiPSs. Carbon nanotubes (CNTs) are further introduced into Mo2C phase to enlarge the specific surface area of the composite, improve its electronic conductivity, and alleviate the volume change during discharging/charging. The strong surface‐bound sulfur in the hierarchical Mo2C‐CNTs host can lead to a superior electrochemical performance in lithium–sulfur batteries. A large reversible capacity of ≈925 mAh g ? 1 is observed after 250 cycles at a current density of 0.1 C (1 C = 1675 mAh g?1) with good rate capability. Notably, the electrodes with high loading amounts of sulfur can also deliver good electrochemical performances, i.e., initial reversible capacities of ≈1314 mAh g?1 (2.4 mAh cm?2), ≈1068 mAh g?1 (3.7 mAh cm?2), and ≈959 mAh g?1 (5.3 mAh cm?2) at various areal loading amounts of sulfur (1.8, 3.5, and 5.6 mg cm?2) are also observed, respectively.  相似文献   

15.
Lithium–sulfur (Li–S) batteries have been disclosed as one of the most promising energy storage systems. However, the low utilization of sulfur, the detrimental shuttling behavior of polysulfides, and the sluggish kinetics in electrochemical processes, severely impede their application. Herein, 3D hierarchical nitrogen‐doped carbon nanosheets/molybdenum phosphide nanocrystal hollow nanospheres (MoP@C/N HCSs) are introduced to Li–S batteries via decorating commercial separators to inhibit polysulfides diffusion. It acts not only as a polysulfides immobilizer to provide strong physical trapping and chemical anchoring toward polysulfides, but also as an electrocatalyst to accelerate the kinetics of the polysulfides redox reaction, and to lower the Li2S nucleation/dissolution interfacial energy barrier and self‐discharge capacity loss in working Li–S batteries, simultaneously. As a result, the Li–S batteries with MoP@C/N HCS‐modified separators show superior rate capability (920 mAh g?1 at 2 C) and stable cycling life with only 0.04% capacity decay per cycle over 500 cycles at 1 C with nearly 100% Coulombic efficiency. Furthermore, the Li–S battery can achieve a high area capacity of 5.1 mAh cm?2 with satisfied capacity retention when the cathode loading reaches 5.5 mg cm?2. This work offers a brand new guidance for rational separator design into the energy chemistry of high‐stable Li–S batteries.  相似文献   

16.
Exploring flexible lithium‐ion batteries is required with the ever‐increasing demand for wearable and portable electronic devices. Selecting a flexible conductive substrate accompanying with closely coupled active materials is the key point. Here, a lightweight, flexible, and freestanding MXene/liquid metal paper is fabricated by confining 3 °C GaInSnZn liquid metal in the matrix of MXene paper without any binder or conductive additive. When used as anode for lithium‐ion cells, it can deliver a high discharge capacity of 638.79 mAh g?1 at 20 mA g?1. It also exhibits satisfactory rate capacities, with discharge capacities of 507.42, 483.33, 480.22, 452.30, and 404.47 mAh g?1 at 50, 100, 200, 500, and 1000 mA g?1, respectively. The cycling performance is obviously improved by slightly reducing the charge–discharge voltage range. The composite paper also has better electrochemical performance than liquid metal coated Cu foil. This study proposes a novel flexible anode by a clever combination of MXene paper and low‐melting point liquid metal, paving the way for next‐generation lithium‐ion batteries.  相似文献   

17.
Lithium–sulfur (Li–S) batteries have heretofore attracted tremendous interest due to low cost and high energy density. In this realm, both the severe shuttling of polysulfide and the uncontrollable growth of dendritic lithium have greatly hindered their commercial viability. Recent years have witnessed the rapid development of rational approaches to simultaneously regulate polysulfide behaviors and restrain lithium dendritic growth. Nevertheless, the major obstacles for high-performance Li–S batteries still lie in little knowledge of bifunctional material candidates and inadequate explorations of advanced technologies for customizable devices. Herein, a “two-in-one” strategy is put forward to elaborate V8C7–VO2 heterostructure scaffolds via the 3D printing (3DP) technique as dual-effective polysulfide immobilizer and lithium dendrite inhibitor for Li–S batteries. A thus-derived 3DP-V8C7–VO2/S electrode demostrates excellent rate capability (643.5 mAh g−1 at 6.0 C) and favorable cycling stability (a capacity decay of 0.061% per cycle at 4.0 C after 900 cycles). Importantly, the integrated Li–S battery harnessing both 3DP hosts realizes high areal capacity under high sulfur loadings (7.36 mAh cm−2 at a sulfur loading of 9.2 mg cm−2). This work offers insight into solving the concurrent challenges for both S cathode and Li anode throughout 3DP.  相似文献   

18.
Lithium–sulfur (Li–S) batteries, despite having high theoretical specific energy, possess many practical challenges, including lithium polysulfide (LiPS) shuttling. To address the issues, here, hydrophilic molybdenum boride (MoB) nanoparticles are presented as an efficient catalytic additive for sulfur cathodes. The high conductivity and rich catalytically active sites of MoB nanoparticles allow for a fast kinetics of LiPS redox in high-sulfur-loading electrodes (6.1 mg cm−2). Besides, the hydrophilic properties and good wettability toward electrolyte of MoB can facilitate electrolyte penetration and LiPS redox, guaranteeing a high utilization of sulfur under a lean-electrolyte condition. Therefore, the cells with MoB achieve impressive electrochemical performance, including a high capacity (1253 mA h g−1) and ultralong lifespan (1000 cycles) with a low capacity fade rate of 0.03% per cycle. Also, pouch cells fabricated with the MoB additive deliver an ultrahigh discharge capacity of 947 mA h g−1, corresponding to a low electrolyte-to-capacity ratio of about 4.8 µL (mA h)−1, and remain stable over 55 cycles under practically necessary conditions with a low electrolyte-to-sulfur ratio of 4.5 µL mg−1.  相似文献   

19.
Lithium–sulfur (Li–S) batteries with high sulfur loading are urgently required in order to take advantage of their high theoretical energy density. Ether‐based Li–S batteries involve sophisticated multistep solid–liquid–solid–solid electrochemical reaction mechanisms. Recently, studies on Li–S batteries have widely focused on the initial solid (sulfur)–liquid (soluble polysulfide)–solid (Li2S2) conversion reactions, which contribute to the first 50% of the theoretical capacity of the Li–S batteries. Nonetheless, the sluggish kinetics of the solid–solid conversion from solid‐state intermediate product Li2S2 to the final discharge product Li2S (corresponding to the last 50% of the theoretical capacity) leads to the premature end of discharge, resulting in low discharge capacity output and low sulfur utilization. To tackle the aforementioned issue, a catalyst of amorphous cobalt sulfide (CoS3) is proposed to decrease the dissociation energy of Li2S2 and propel the electrochemical transformation of Li2S2 to Li2S. The CoS3 catalyst plays a critical role in improving the sulfur utilization, especially in high‐loading sulfur cathodes (3–10 mg cm?2). Accordingly, the Li2S/Li2S2 ratio in the discharge products increased to 5.60/1 from 1/1.63 with CoS3 catalyst, resulting in a sulfur utilization increase of 20% (335 mAh g?1) compared to the counterpart sulfur electrode without CoS3.  相似文献   

20.
Sulfur cathodes have become appealing for rechargeable batteries because of their high theoretical capacity (1675 mA h g?1). However, the conventional cathode configuration borrowed from lithium‐ion batteries may not allow the pure sulfur cathode to put its unique materials chemistry to good use. The solid(sulfur)–liquid(polysulfides)–solid(sulfides) phase transitions generate polysulfide intermediates that are soluble in the commonly used organic solvents in Li–S cells. The resulting severe polysulfide diffusion and the irreversible active‐material loss have been hampering the development of Li–S batteries for years. The present study presents a robust, ultra‐tough, flexible cathode with the active‐material fillings encapsulated between two buckypapers (B), designated as buckypaper/sulfur/buckypaper (B/S/B) cathodes, that suppresses the irreversible polysulfide diffusion to the anode and offers excellent electrochemical reversibility with a low capacity fade rate of 0.06% per cycle after 400 cycles. Engineering enhancements demonstrate that the B/S/B cathodes represent a facile approach for the development of high‐performance sulfur electrodes with a high areal capacity of 5.1 mA h cm?2, which increases further to approach 7 mA h cm?2 on coupling with carbon‐coated separators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号