首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major obstacle for the use of single‐wall carbon nanotubes (SWCNTs) in electronic devices is their mixture of different types of electrical conductivity that strongly depends on their helical structure. The existence of metal impurities as a residue of a metallic growth catalyst may also lower the performance of SWCNT‐based devices. Here, it is shown that by using silicon oxide (SiOx) nanoparticles as a catalyst, metal‐free semiconducting and metallic SWCNTs can be selectively synthesized by the chemical vapor deposition of ethanol. It is found that control over the nanoparticle size and the content of oxygen in the SiOx catalyst plays a key role in the selective growth of SWCNTs. Furthermore, by using the as‐grown semiconducting and metallic SWCNTs as the channel material and source/drain electrodes, respectively, all‐SWCNT thin‐film transistors are fabricated to demonstrate the remarkable potential of these SWCNTs for electronic devices.  相似文献   

2.
We demonstrate that any metal, even gold, silver, and copper, can act as a catalyst for SWCNT synthesis in chemical vapor deposition (CVD). Metal nanoparticles 3 nm or less in diameter, introduced into CVD ambience immediately after heat treatment at 800-950 degrees C in air, produce SWCNTs. The activation method is effective for copper and various noble metals as well as for iron-family elements. This implies that any metal particle may produce SWCNTs when its size becomes 1-3 nm. In other words, carbon atoms can form SWCNTs in a self-assembling fashion on nanoparticles without the specific functions of iron-family elements.  相似文献   

3.
Great interest in single‐walled carbon nanotubes (SWCNTs) derives from their remarkable electrical, thermal, optical, and mechanical properties together with their lower density, which promise extensive and unique applications. Much progress has been achieved in the fundamental and applied investigations of SWCNTs over the past decade. At the same time, many obstacles still remain, hampering further development in this field. To clarify the emerging problems and to provide a comprehensive understanding of the field, we review the recent progress of research on the synthesis, structure, and properties of SWCNTs, in particular the SWCNT non‐woven film, SWCNT rings, boron–nitrogen (B–N) co‐doped SWCNTs (BCN‐SWNTs), and individual SWCNTs. Some long‐standing problems and topics warranting further investigations in the near future are addressed.  相似文献   

4.
Nanometer-sized Pt, Rh, and bimetallic Pt-Rh particles can be deposited on surface of phenylacetic acid functionalized single-walled carbon nanotubes (SWCNTs) by a microemulsion method. The SWCNT-supported metallic nanoparticles show much greater catalytic activities compared with commercially available carbon-supported Pt and Rh catalysts for hydrogenation of neat benzene under mild experimental conditions. The bimetallic Pt-Rh nanoparticle catalyst synthesized by this method shows an enhanced activity relative to individual SWCNT-supported Pt and Rh nanoparticle catalysts. The SWCNT-supported metal nanoparticle catalysts can be recycled and reused at least five times without losing their activity. The hydrogenation reactions performed under our experimental conditions would not affect the pi-pi stacking holding phenylacetic acid on SWCNT surface.  相似文献   

5.
The use of carbon nanotubes (CNTs) as cylindrical reactor vessels has become a viable means for synthesizing graphene nanoribbons (GNRs). While previous studies demonstrated that the size and edge structure of the as‐produced GNRs are strongly dependent on the diameter of the tubes and the nature of the precursor, the atomic interactions between GNRs and surrounding CNTs and their effect on the electronic properties of the overall system are not well understood. Here, it is shown that the functional terminations of the GNR edges can have a strong influence on the electronic structure of the system. Analysis of SWCNTs before and after the insertion of sulfur‐terminated GNRs suggests a metallization of the majority of semiconducting SWCNTs. This is indicated by changes in the radial breathing modes and the D and G band Raman features, as well as UV–vis–NIR absorption spectra. The variation in resonance conditions of the nanotubes following GNR insertion make direct (n,m) assignment by Raman spectroscopy difficult. Thus, density functional theory calculations of representative GNR/SWCNT systems are performed. The results confirm significant changes in the band structure, including the development of a metallic state in the semiconducting SWCNTs due to sulfur/tube interactions. The GNR‐induced metallization of semiconducting SWCNTs may offer a means of controlling the electronic properties of bulk CNT samples and eliminate the need for a physical separation of semiconducting and metallic tubes.  相似文献   

6.
We report high purity and high yield synthesis of single-wall carbon nanotubes (SWCNTs) of narrow diameter from iron-copper bimetal catalysts. The SWCNTs with diameter of 0.8-1.2 nm are synthesized using the zeolite-supported alcohol chemical vapour deposition method. Single metal and bimetal catalysts are systematically investigated to achieve both the enhancement of SWCNT yield and the suppression of the undesired formation of graphitic impurities. The relative yield and purity of SWCNTs are quantified using optical absorption spectroscopy with an ultracentrifuge-based purification technique. For the single metal catalyst, iron shows the highest catalytic activity compared with the other metals such as cobalt, nickel, molybdenum, copper, and platinum. It has been found that the addition of copper to iron results in the suppression of carbonaceous impurity formation without decreasing the SWCNT yield. The purity-enhanced SWCNT shows fairly low sheet resistance due to the improvement of inter-nanotube contacts. This scalable design of SWCNT synthesis with enhanced purity is therefore a promising tool for shaping future high performance devices.  相似文献   

7.
We investigated the single-walled carbon nanotubes (SWCNTs) growth on Ru nanoparticle catalyst via hot filament assisted chemical vapor deposition (HFCVD) with two independent W filaments for the carbon precursor (methane) and the hydrogen dissociation respectively. The Ru nanoparticles were obtained following a two-step strategy. At first the growth substrate is functionalized by silanisation, then a self assembly of a ruthenium porphyrin complex monolayer on pyridine-functionalized metal oxide substrates. We have studied the impact of the filaments power and we optimized the SWCNTs growth temperature. The as grown SWCNTs were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy. It was found that the quality, density and the diameter of SWCNTs depends on the filament and growth temperature. Results of this study can be used to improve the understanding of the growth of SWCNTs by HFCVD.  相似文献   

8.
Based on the interfacial self-assembly of magnetite nanoparticles, we demonstrate the formation of colloidosomes with shells predominantly composed of monolayers of liquid-like, close-packed nanoparticles. The gelation of aqueous phase with agarose leads to robust and water-dispersible nanoparticle colloidosomes, allowing encapsulation of various water soluble materials. The cutoff of the nanoparticle colloidosomes obtained is primarily defined by the nanoparticle size. This controllable permeability should be of great importance for the encapsulation application.  相似文献   

9.
Carbon nanotubes (CNTs) have the recorded mechanical strength, exceptionally high thermal stability close to that of diamond, and an extremely high carrier mobility, which is two orders of magnitude higher than that of silicon. A CNT can be conducting, medium or small band gap semiconducting, depending on the exact atomic configuration and the tube diameter. To realize its applications in high-end electronics and even replacing silicon in semiconductor industry, the synthesis of high-purity single-walled CNTs (SWCNTs) with unique structure (chirality) at a relatively low price, is essential. Direct synthesis of SWCNTs with the desired chirality has been one of the great challenges for more than 20?years and it is only very recently that direct synthesis of SWCNTs with purity >90% was achieved. In this review, we have summarized previous researches and state-of-the-art chirality-selective SWCNT synthesis, including experimental and theoretical studies dealing with the mechanism of SWCNT growth, potential routes toward chirality-selection during growth, and recent experimental techniques targeted toward the selective growth of high-purity SWCNTs.  相似文献   

10.
Chitosan-DNA nanoparticles were prepared by using different anions (such as chloride, sulfate, citrate, and tripolyphosphate) as mediation agents. The research suggested that the formation and morphological characteristics of chitosan-DNA nanoparticles largely depended on concentration, molecular size, charge number, and chemical structure of anions, as well as chitosan/DNA ratio. The observation by atom force microscopy showed that chitosan-DNA nanoparticles mediated by four anions (in their appropriate range of concentration) had a spherical shape, narrow size distribution, and good monodispersivity. Especially, nanoparticles mediated by sulfate and TPP had a size distribution of 40-50 nm. Additionally, the nanoparticles presented high encapsulation efficiency and good protection of DNA from DNasel digestion. The zeta-potential of nanoparticles could be adjusted moderately by adding different anions and controlling their concentrations, and DNA encapsulation efficiency was not influenced, which would reduce nonspecific interactions with the cell membrane and nanoparticle toxicity. Smaller size and lower zeta-potential will be beneficial for improving gene therapy. In addition, the anion mediation method has potential for the preparation of cationic polymer nanoparticles as drug or gene vectors.  相似文献   

11.
Gold nanoparticles have unique properties that are highly dependent on their shape and size. Synthetic methods that enable precise control over nanoparticle morphology currently require shape‐directing agents such as surfactants or polymers that force growth in a particular direction by adsorbing to specific crystal facets. These auxiliary reagents passivate the nanoparticles' surface, and thus decrease their performance in applications like catalysis and surface‐enhanced Raman scattering. Here, a surfactant‐ and polymer‐free approach to achieving high‐performance gold nanoparticles is reported. A theoretical framework to elucidate the growth mechanism of nanoparticles in surfactant‐free media is developed and it is applied to identify strategies for shape‐controlled syntheses. Using the results of the analyses, a simple, green‐chemistry synthesis of the four most commonly used morphologies: nanostars, nanospheres, nanorods, and nanoplates is designed. The nanoparticles synthesized by this method outperform analogous particles with surfactant and polymer coatings in both catalysis and surface‐enhanced Raman scattering.  相似文献   

12.
Kim JJ  Lee BJ  Lee SH  Jeong GH 《Nanotechnology》2012,23(10):105607
The electronic, physical and optical properties of single-walled carbon nanotubes (SWNTs) are governed by their diameter and chirality, and thus much research has been focused on controlling the diameter and chirality of SWNTs. To date, control of the catalyst particle size has been thought to be one of the most promising approaches to control the diameter or chirality of SWNTs owing to the correlation between catalyst particle size and tube diameter.In this study, we demonstrate the size engineering of catalytic nanoparticles for the controlled growth of diameter-specified and horizontally aligned SWNTs on quartz substrates. Uniformly sized iron nanoparticles derived from ferritin molecules were used as a catalyst, and their size was intentionally decreased via thermal heat treatment at 900?°C under atmospheric Ar ambient. ST-cut quartz wafers were used as growth substrates in order to elucidate the effect of the size of the nanoparticles on the tube diameter and the effect of catalyst size on the degree of parallel alignment on the quartz substrates. SWNTs grown by chemical vapor deposition using methane as feedstock exhibited a high degree of horizontal alignment when the particle density was low enough to produce individual SWNTs without bundling. Annealing for 60?min at 900?°C produced a reduction of nanoparticle diameter from 2.6 to 1.8?nm and a decrease in the mean tube diameter from 1.2 to 0.8?nm, respectively. Raman spectroscopy results corroborated the observation that prolonged heat treatment of nanoparticles yields thinner tubes with narrower size distributions. The results of this work suggest that straightforward thermal annealing can be a facile way to obtain uniform-sized SWNTs as well as catalytic nanoparticles.  相似文献   

13.
采用沉淀方法制备了直径分布狭窄的均匀Fe3O4纳米颗粒.Fe3O4纳粒形体几近一致,平均粒径为10.33 nm±2.99 nm(平均粒径±标准偏差).在超声作用下将MgO纳米颗粒分散在一定量Fe3O4纳米颗粒的水溶液中获得MgO负载Fe3O4的纳米颗粒.以甲烷为碳源,Fe3O4/MgO为催化剂,经化学气相沉积,在Fe3O4纳粒上制得了大量直径近乎均匀的单壁碳纳米管(SWCNTs)束.TEM显示:SWCNTs的平均直径1.22rm.热重分析显示:样品在400℃~600℃温度区间失重量约19%.拉曼光谱显示:SWCNTs的ID/IG的强度比为0.03,表明采用Fe3O4/MgO催化剂可制得高石墨化程度的单壁碳纳米管.  相似文献   

14.
Single-walled carbon nanotubes (SWCNTs) with a narrow diameter distribution were synthesized by radio frequency-Catalytic Chemical Vapor Deposition (RF-CCVD) through the pyrolysis of CH4. Fe-Co bimetallic catalytic nanoclusters were supported on high-surface area MgO nanopowders and used in the nanotube synthesis process. Nanolog absorption fluorescence analysis was used to characterize the chiralities of the as-produced SWCNTs over this nanostructural catalyst. In the final SWCNT sample, the (7,5) semiconducting carbon nanotube species were found to be dominant, with a low chirality variation.  相似文献   

15.
A self‐assembly approach for the design of multifunctional nanomaterials consisting of different nanoparticles (gold, iron oxide, and lanthanide‐doped LiYF4) is developed. This modular system takes advantage of the light‐responsive supramolecular host–guest chemistry of β‐cyclodextrin and arylazopyrazole, which enables the dynamic and reversible self‐assembly of particles to spherical nanoparticle aggregates in aqueous solution. Due to the magnetic iron oxide nanoparticles, the aggregates can be manipulated by an external magnetic field leading to the formation of linear structures. As a result of the integration of upconversion nanoparticles, the aggregates are additionally responsive to near‐infrared light and can be redispersed by use of the upconversion effect. By varying the nanoparticle and linker concentrations the composition, size, shape, and properties of the multifunctional nanoparticle aggregates can be fine‐tuned.  相似文献   

16.
Single‐walled carbon nanotubes are promising for many applications due to their unique mechanical, electrical and optical properties. However, their application has been hampered so far by the lack of controllability in the direct growth process, in particular the size and chirality distributions which inevitably lead to a large variability of their electronic structures. Here we demonstrate the effect of catalyst interfacial diffusion using a tri‐layered Al2O3/Fe(Mo)/Al2O3 catalyst and achieve the effective control of density, diameter, and conductivity of the as‐grown nanotube networks. This method modulates the thickness of the top Al2O3 layer which affects the diffusion of Fe atoms and subsequently the formation of catalyst nanoparticles. We show that the tri‐layered catalyst allows one to vary the density of networks from 0.18 to 35 tubes/μm2, the diameter from 1.36 to 1.72 nm, and the metallic fraction from 20% to 45%. It may thus represent a promising strategy for tailoring the properties of as‐grown carbon nanotube networks for their proposed applications.  相似文献   

17.
Low‐bandgap diketopyrrolopyrrole (DPP)‐based polymers are used for the selective dispersion of semiconducting single‐walled carbon nanotubes (s‐SWCNTs). Through rational molecular design to tune the polymer–SWCNT interactions, highly selective dispersions of s‐SWCNTs with diameters mainly around 1.5 nm are achieved. The influences of the polymer alkyl side‐chain substitution (i.e., branched vs linear side chains) on the dispersing yield and selectivity of s‐SWCNTs are investigated. Introducing linear alkyl side chains allows increased polymer–SWCNT interactions through close π–π stacking and improved C–H–π interactions. This work demonstrates that polymer side‐chain engineering is an effective method to modulate the polymer–SWCNT interactions and thereby affecting both critical parameters in dispersing yield and selectivity. Using these sorted s‐SWCNTs, high‐performance SWCNT network thin‐film transistors are fabricated. The solution‐deposited s‐SWCNT transistors yield simultaneously high mobilities of 41.2 cm2 V?1 s?1 and high on/off ratios of greater than 104. In summary, low‐bandgap DPP donor–acceptor polymers are a promising class of polymers for selective dispersion of large‐diameter s‐SWCNTs.  相似文献   

18.
Postsynthetic single‐walled carbon nanotube (SWCNT) sorting methods such as density gradient ultracentrifugation, gel chromatography, and electrophoresis have all been inspired by established biochemistry separation techniques designed to separate subcellular components. Biochemistry separation techniques have been refined to the degree that parameters such as pH, salt concentration, and temperature are necessary for a successful separation, yet these conditions are only now being applied to SWCNT separation methodologies. Slight changes in pH produce radically different behaviors of SWCNTs inside a density gradient, allowing for the facile separation of ultrahigh purity (6,4) SWCNTs from as‐synthesized carbon nanotubes. The (6,4) SWCNTs are novel fluorophores emitting below ≈900 nm and can be easily detected with conventional silicon‐based charge‐coupled device detectors without the need for specialized InGaAs cameras. The (6,4) SWCNTs are used to demonstrate their potential as a clinically relevant NIR‐I fluorescence stain for the immunohistochemical staining of cells and cancer tissue sections displaying high endothelial growth factor receptor levels.  相似文献   

19.
Co–Mo catalysts supported on four different high surface area oxides (SiO2, Al2O3, MgO, and TiO2) were evaluated to investigate the (n,m) selectivity control in single-walled carbon nanotube (SWCNT) synthesis. Results from Raman spectroscopy and thermogravimetric analysis showed that Co–Mo catalysts supported on SiO2 and MgO possessed good selectivity toward SWCNTs, while photoluminescence and ultraviolet–visible–near-infrared spectroscopy results indicated that these two catalyst supports induced the same (n,m) selectivity to near-armchair tubes, such as (6,5) and (7,5) tubes. Catalysts supported on TiO2 produced a mixture of multi-walled carbon nanotubes (MWCNTs) and SWCNTs, whereas catalysts supported on Al2O3 mainly grew MWCNTs. Characterization of catalysts by ultraviolet–visible diffuse reflectance spectroscopy suggested that the surface morphology of metal clusters over different supports was not directly responsible for the (n,m) selectivity. Analysis of monometallic (Co or Mo) and bimetallic (Co–Mo) catalysts using temperature program reduction demonstrated that catalyst supports changed the reducibility of metal species. The interaction between supports and Co/Mo metals perturbed the synergistic effect between Co and Mo, leading to the formation of different metal species that are responsible for the observed distinction in SWCNT synthesis.  相似文献   

20.
The size and surface chemistry of nanoparticles dictate their interactions with biological systems. However, it remains unclear how these key physicochemical properties affect the cellular association of nanoparticles under dynamic flow conditions encountered in human vascular networks. Here, the facile synthesis of novel fluorescent nanoparticles with tunable sizes and surface chemistries and their association with primary human umbilical vein endothelial cells (HUVECs) is reported. First, a one‐pot polymerization‐induced self‐assembly (PISA) methodology is developed to covalently incorporate a commercially available fluorescent dye into the nanoparticle core and tune nanoparticle size and surface chemistry. To characterize cellular association under flow, HUVECs are cultured onto the surface of a synthetic microvascular network embedded in a microfluidic device (SynVivo, INC). Interestingly, increasing the size of carboxylic acid–functionalized nanoparticles leads to higher cellular association under static conditions but lower cellular association under flow conditions, whereas increasing the size of tertiary amine–decorated nanoparticles results in a higher level of cellular association, under both static and flow conditions. These findings provide new insights into the interactions between polymeric nanomaterials and endothelial cells. Altogether, this work establishes innovative methods for the facile synthesis and biological characterization of polymeric nanomaterials for various potential applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号