首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In aquatic environments, a large number of ecological macromolecules (e.g., natural organic matter (NOM), extracellular polymeric substances (EPS), and proteins) can adsorb onto the surface of engineered nanomaterials (ENMs) to form a unique environmental corona. The presence of environmental corona as an eco–nano interface can significantly alter the bioavailability, biocompatibility, and toxicity of pristine ENMs to aquatic organisms. However, as an emerging field, research on the impact of the environmental corona on the fate and behavior of ENMs in aquatic environments is still in its infancy. To promote a deeper understanding of its importance in driving or moderating ENM toxicity, this study systemically recapitulates the literature of representative types of macromolecules that are adsorbed onto ENMs; these constitute the environmental corona, including NOM, EPS, proteins, and surfactants. Next, the ecotoxicological effects of environmental corona‐coated ENMs on representative aquatic organisms at different trophic levels are discussed in comparison to pristine ENMs, based on the reported studies. According to this analysis, molecular mechanisms triggered by pristine and environmental corona‐coated ENMs are compared, including membrane adhesion, membrane damage, cellular internalization, oxidative stress, immunotoxicity, genotoxicity, and reproductive toxicity. Finally, current knowledge gaps and challenges in this field are discussed from the ecotoxicology perspective.  相似文献   

2.
Ingestion of engineered nanomaterials (ENMs) is inevitable due to their widespread utilization in the agrifood industry. Safety evaluation has become pivotal to identify the consequences on human health of exposure to these ingested ENMs. Much of the current understanding of nanotoxicology in the gastrointestinal tract (GIT) is derived from studies utilizing pristine ENMs. In reality, agrifood ENMs interact with their microenvironment, and undergo multiple physicochemical transformations, such as aggregation/agglomeration, dissolution, speciation change, and surface characteristics alteration, across their life cycle from synthesis to consumption. This work sieves out the implications of ENM transformations on their behavior, stability, and reactivity in food and product matrices and through the GIT, in relation to measured toxicological profiles. In particular, a strong emphasis is given to understand the mechanisms through which these transformations can affect ENM induced gut nanotoxicity.  相似文献   

3.
4.
It is critical to detect and analyze the heavy metal pollutions in environments and foods. Chemosensors have been widely investigated for fast detection of analytes such as heavy metals due to their unique advantages. In order to improve the detection sensitivity of chemosensors, recently electrospun nanofibrous membranes (ENMs) have been explored for the immobilization of chemosensors or receptors due to their high surface‐to‐volume ratio, high porosity, easiness of fabrication and functionalization, controllability of nanofiber properties, low cost, easy detection, no obvious pollution to the detection solution, and easy post‐treatment after the detection process. The purpose of this review is to summarize and guide the development and application of ENMs in the field of chemosensors for the detection of analytes, especially heavy metals. First, heavy metals, chemosensors, and four types of preparation methods for ENM‐immobilized chemosensors/receptors are briefly introduced. And then, ENM‐immobilized chemosensors/receptors and their application progresses for optical, electro, and mass detections of heavy metals are reviewed according to the four types of preparation methods. Finally, the application of ENM‐immobilized chemosensors/receptors is summarized and an outlook is provided. The review will provide an instruction to the research and development of ENM‐immobilized chemosensors/receptors for the detection of analytes.  相似文献   

5.
6.
Engineered nanomaterials (ENMs) are anticipated to find use in many human activities and commercial products. Concerns are therefore being raised regarding their environmental fate and toxicological implications, which remain largely unknown. In this study, we investigate the effects of C(60), nano-Ag and CdSe quantum dots (QD) on microbial-catalyzed oxidation of organic matter in freshwater sediments. Sediment slurries spiked with sodium acetate at a final concentration of 150 mg/L were separately treated with pre-identified toxic levels of the tested ENMs. The study focused primarily on acetate oxidation by nitrate reducing bacteria. Sediment slurries were incubated under anaerobic conditions in parallel with control samples, and changes in concentrations of acetate, nitrate and nitrite tracked over time. The results showed that tested C(60) concentration completely inhibited the microbial oxidation of acetate, whereas the addition of nano-Ag and CdSe QD to sediment slurries negatively affected the rates of acetate oxidation. Under conditions with nitrate as prevalent electron acceptor, reaction rates of acetate degradation decreased from 0.44 day(-1) in control slurries to 0.24 day(-1) and 0.20 day(-1) in slurries treated with nano-Ag and CdSe QD, respectively. These preliminary results call for further investigations on potential long-term effects of ENMs on microbial driven basic ecosystem services.  相似文献   

7.
In the environment, nanomaterials (NMs) are subject to chemical transformations, such as redox reactions, dissolution, coating degradation, and organic matter, protein, and macromolecule binding, and physical transformations including homo or heteroagglomeration. The combination of these reactions can result in NMs with differing characteristics progressing through a functional fate pathway that leads to the formation of transformed NM functional fate groups with shared properties. To establish the nature of such effects of transformation on NMs, four main types of studies are conducted: 1) chemical aging for transformation of pristine NMs; 2) manipulation of test media to change NM surface properties; 3) aging of pristine NMs water, sediment, or soil; 4) NM aging in waste streams and natural environments. From these studies a paradigm of aging effects on NM uptake and toxicity can be developed. Transformation, especially speciation changes, largely results in reduced potency. Further reactions at the surface resulting in processes, such as ecocorona formation and heteroagglomeration may additionally reduce NM potency. When NMs of differing potency transform and enter environments, common transformation reaction occurring in receiving system may act to reduce the variation in hazard between different initial NMs leading to similar actual hazard under realistic exposure conditions.  相似文献   

8.
It is a big challenge to reveal the intrinsic cause of a nanotoxic effect due to diverse branches of signaling pathways induced by engineered nanomaterials (ENMs). Biotransformation of toxic ENMs involving biochemical reactions between nanoparticles (NPs) and biological systems has recently attracted substantial attention as it is regarded as the upstream signal in nanotoxicology pathways, the molecular initiating event (MIE). Considering that different exposure routes of ENMs may lead to different interfaces for the arising of biotransformation, this work summarizes the nano–bio interfaces and dose calculation in inhalation, dermal, ingestion, and injection exposures to humans. Then, five types of biotransformation are shown, including aggregation and agglomeration, corona formation, decomposition, recrystallization, and redox reactions. Besides, the characterization methods for investigation of biotransformation as well as the safe design of ENMs to improve the sustainable development of nanotechnology are also discussed. Finally, future perspectives on the implications of biotransformation in clinical translation of nanomedicine and commercialization of nanoproducts are provided.  相似文献   

9.
This study presents the results of applying deep learning methodologies within the ecotoxicology field, with the objective of training predictive models that can support hazard assessment and eventually the design of safer engineered nanomaterials (ENMs). A workflow applying two different deep learning architectures on microscopic images of Daphnia magna is proposed that can automatically detect possible malformations, such as effects on the length of the tail, and the overall size, and uncommon lipid concentrations and lipid deposit shapes, which are due to direct or parental exposure to ENMs. Next, classification models assign specific objects (heart, abdomen/claw) to classes that depend on lipid densities and compare the results with controls. The models are statistically validated in terms of their prediction accuracy on external D. magna images and illustrate that deep learning technologies can be useful in the nanoinformatics field, because they can automate time‐consuming manual procedures, accelerate the investigation of adverse effects of ENMs, and facilitate the process of designing safer nanostructures. It may even be possible in the future to predict impacts on subsequent generations from images of parental exposure, reducing the time and cost involved in long‐term reproductive toxicity assays over multiple generations.  相似文献   

10.
Nanomaterials and the environment: a review for the biennium 2008-2010   总被引:3,自引:0,他引:3  
Applications of nanotechnology are touching almost every aspect of modern life. The increased use of engineered nanomaterials (ENMs) in consumer products, chemical and medical equipment, information technology, and energy, among others, has increased the number of publications (informative and scientific) on ENMs. By the 1950s, very few papers were committed to nanomaterials (NMs), but in 2009, more than 80,000 journal articles included the concept nanotechnology. The objective of this review is to compile and analyze publications on NMs in the biennium 2008-2010. This review includes the most recent publications in risk assessment/toxicity, characterization and stability, toxicity, fate and transport of NMs in terrestrial ecosystems, and new ENMs. Carbon nanotubes, metallic, metal oxides and hydroxides nanoparticles, quantum dots, and polystyrene NPs are included.  相似文献   

11.
From regulatory perspectives, there has been a debate in the scientific literature as to whether or not metallic engineered nanomaterials (ENMs) should be treated as new chemicals in terms of their toxic effects upon biological species. This debate has prompted us to examine the scientific evidence to validate those paradoxical claims. Investigations covering the effects of metallic ENMs and metal-based ions in the same study were included in this research. The findings reported herein suggest that the different arguments are valid if a wider perspective takes into account the common, different and unique effects of metallic nanoparticles versus metal-based ions. This perspective has been evident from investigations of aquatic (lower organisms such as Daphnia magna and higher organisms like zebra fish) and other organisms (e.g., microbes, nematodes, animal and human cells). It is suggested that the regulation of metallic nanomaterial-based products be transformed to a tier-based approach as a function of the common, different and unique effects to manage the complexity brought into light due to the infinite combinations of the particle physical–chemical properties.  相似文献   

12.
In this Review, an effort is made to discuss the most recent progress and future trend in the two‐way traffic of the interactions between plants and nanoparticles (NPs). One way is the use of plants to synthesize NPs in an environmentally benign manner with a focus on the mechanism and optimization of the synthesis. Another way is the effects of synthetic NPs on plant fate with a focus on the transport mechanisms of NPs within plants as well as NP‐mediated seed germination and plant development. When NPs are in soil, they can be adsorbed at the root surface, followed by their uptake and inter/intracellular movement in the plant tissues. NPs may also be taken up by foliage under aerial deposition, largely through stomata, trichomes, and cuticles, but the exact mode of NP entry into plants is not well documented. The NP–plant interactions may lead to inhibitory or stimulatory effects on seed germination and plant development, depending on NP compositions, concentrations, and plant species. In numerous cases, radiation‐absorbing efficiency, CO2 assimilation capacity, and delay of chloroplast aging have been reported in the plant response to NP treatments, although the mechanisms involved in these processes remain to be studied.  相似文献   

13.
Little is known about the occurrence and the fate of veterinary drugs in the environment. Therefore, a liquid chromatography/tandem mass spectrometry method was developed and employed to investigate in detail the distribution and persistence of the frequently used tetracyclines and tylosin in a field fertilized with liquid manure on April 2000 and April 2001; soil sampling was performed in May 2000, November 2000, and May 2001. We detected 4.0 mg/kg tetracycline and 0.1 mg/kg chlortetracycline in the liquid manure of April 2000, as well as comparable amounts in the liquid manure of April 2001. In the soil samples of May 2001, the highest average concentrations of 86.2 (0-10 cm), 198.7 (10-20 cm), and 171.7 microg/kg (20-30 cm) tetracycline and 4.6-7.3 micro/kg chlortetracycline (all three sublayers) were found. At soil depths between 30 and 90 cm, as well as in soil or groundwater, tetracyclines could not be detected. In addition, oxytetracycline and tylosin could not be detected in any sample investigated. We conclude that tetracyclines enter the environment in significant concentrations via repeated fertilizations with liquid manure, build up persistent residues, and accumulate in soil. Therefore, tetracyclines may have a potential risk and investigations on the environmental effects of these antibiotics are necessary.  相似文献   

14.
The effects of oxytetracycline (OTC) on soil organisms have been studied using a multi-species-soil system (MS.3). Oxytetracycline concentrations of 0.01 mg/kg, 1 mg/kg and 100 mg/kg soil were added to the 20 cm top arable soil layer, with and without horse/cow manure (0.15 g organic N/kg soil) co-addition. No mortality was observed for Eisenia foetida S. but significant effects on soil microbial enzymatic activities (phosphatase, dehydrogenase) were observed. The effects on soil microorganism were observed earlier but then recovered in systems with manure co-addition. More important, OTC related plant inhibition was observed in the manured but not in the non-manured systems. Oxytetracycline reached 0.19 and 1.85 mg/l in the leachate of the soil spiked with 1 and 100 mg OTC/kg, respectively and 0.05 and 1.14 mg/l for the same OTC concentrations in the manured systems. The results confirm that manure can modify both the fate and the effects of OTC and that the multi-species-soil systems can reproduce the conditions for a realistic effect estimation of veterinary medicines.  相似文献   

15.
Introduction of organic dyes into soil via wastewater and sludge applications has been of increasing concern especially in developing or under-developed countries where appropriate management strategies are scarce. Assessing the response of terrestrial ecosystems to organic dyes and estimating the inhibition concentrations will probably contribute to soil remediation studies in regions affected by the same problem. Hence, an incubation study was conducted in order to investigate the impact of a sulfonated azo dye, Reactive Black 5 (RB5) and sulfanilic acid (SA), a typical representative of aromatic sulfonated amines, on soil nitrogen transformation processes. The results apparently showed that nitrogen related processes in soil can be used as bioindicators of anthropogenic stress caused by organic dyes. It was found that urease activity, arginine ammonification rate, nitrification potential and ammonium oxidising bacteria numbers decreased by 10–20% and 7–28% in the presence of RB5 (>20 mg/kg dry soil) and SA (>8 mg/kg dry soil), respectively. Accordingly, it was concluded that organic dye pollution may restrict the nitrogen-use-efficiency of plants, thus further reducing the productivity of terrestrial ecosystems. Furthermore, the response of soil microbiota to SA suggested that inhibition effects of the organic dye may continue after the possible reduction of the parent dye to associated aromatic amines.  相似文献   

16.
Li H  Ling W  Lin C 《Journal of hazardous materials》2011,186(2-3):1474-1480
Investigation was made to characterize the fishpond sediment-borne DDTs and HCHs in a dyke-pond integrated agriculture-aquaculture system. Microcosm experiment was conducted to track the fate of DDTs and HCHs following the use of the sediment as plant growth media. The ratios of DDT/DDE+DDD, o,p'-DDT/p,p'-DDT and DDD/DDE were over 4, over 2 and nearly 2, respectively. These suggest that fresh DDT inputs from dicofol application are likely and anaerobic decomposition was the major pathway of DDT degradation. The sediments had higher percentage of δ-HCH and lower percentage of γ-HCH, compared to technical HCH. The levels of both DDTs and HCHs were higher in the sediments, as compared to those in the estuarine sediments and fishpond sediments in non-traditional dyke-pond system. The sediment-borne DDTs and HCHs posed an environmental threat to the local ecosystem. Upon its use as plant growth media, the majority of DDTs was retained in the soil while <1/3 of the original soil-borne DDTs were lost; no leaching loss was recorded and plant uptake was negligible. Only <20% of the original soil-borne HCHs were retained in the soil while leaching loss accounted for 1.24%; nearly 79% of the original soil-borne HCHs disappeared as a result of HCHs degradation and possibly volatilization.  相似文献   

17.
Environmental endocrine disruptors such as estrone (E1) and beta-estradiol (E2) are excreted in human urine primarily as water-soluble glucuronides and sulfates that can dissociate in wastewater treatment systems to the more active free estrogens. Measurement of the distribution and fate of the steroid conjugates and the corresponding free estrogens in treatment plants and receiving waters is critical for understanding the reproductive and developmental effects of these substances on aquatic organisms. A sensitive method to measure steroid estrogen conjugates in matrix-rich sewage influents and effluents (method detection limits ranged from 0.04 to 0.28 ng/L) has been developed using HPLC tandem mass spectrometry with electrospray ionization. The method employs extensive sample purification by selective extraction from an Oasis HLB solid-phase cartridge followed by separation by anion exchange chromatography. This purification scheme, combined with a stable isotope dilution approach, was used to overcome problems of matrix suppression of ionization and permitted selective and sensitive detection of six target conjugates of E1 and E2. Accurate quantitation was highly dependent on the method of sample preservation. Acidification of each sample (pH 2.0) was effective in preventing enzymatic or chemical decomposition of steroid conjugates in all sample types, whereas glucuronide conjugates were hydrolyzed in the presence of mercury and formalin preservatives. Measured concentrations of steroid sulfates in the influent to a sewage treatment plant were approximately 100 times greater than that of the respective steroid glucuronides, suggesting that the preponderance of glucuronides had dissociated prior to reaching the treatment plant. A small percentage of the steroid sulfates persisted through biological treatment of sewage and was measured in the effluent. Steroid conjugates that survive decomposition or bypass biological treatment of municipal wastewater are released into surface waters and may serve as a source of free steroids.  相似文献   

18.
As a result of bovine spongiform encephalopathy (BSE) crisis, meat and bone meal (MBM) production can no longer be used to feed cattle and must be safely disposed of or transformed. MBM specific incineration remains an alternative that could offer the opportunity to achieve both thermal valorization and solid waste recovery as ashes are calcium phosphate-rich material. The aim of this work is to evaluate ashes efficiency for in situ remediation of lead-contaminated aqueous solutions and soils, and to assess the bioavailability of lead using two biological models, amphibian Xenopus laevis larvae and Nicotiana tabaccum tobacco plant. With the amphibian model, no toxic or genotoxic effects of ashes are observed with concentrations from 0.1 to 5 g of ashes/L. If toxic and genotoxic effects of lead appear at concentration higher than 1 mg Pb/L (1 ppm), addition of only 100 mg of ashes/L neutralizes lead toxicity even with lead concentration up to 10 ppm. Chemical investigations (kinetics and X-ray diffraction (XRD) analysis) reveals that lead is quickly immobilized as pyromorphite [Pb10(PO4)6(OH)2] and lead carbonate dihydrate [PbCO(3).2H2O]. Tobacco experiments are realized on contaminated soils with 50, 100, 2000 and 10000 ppm of lead with and without ashes amendment (35.3g ashes/kg of soil). Tobacco measurements show that plant elongation is bigger in an ashes-amended soil contaminated with 10000 ppm of lead than on the reference soil alone. Tobacco model points out that ashes present two beneficial actions as they do not only neutralize lead toxicity but also act as a fertilizer.  相似文献   

19.
Engineered nanomaterials (ENMs) are used in food additives, food packages, and therapeutic purposes owing to their useful properties, Therefore, human beings are orally exposed to exogenous nanomaterials frequently, which means the intestine is one of the primary targets of nanomaterials. Consequently, it is of great importance to understand the interaction between nanomaterials and the intestine. When nanomaterials enter into gut lumen, they inevitably interact with various components and thereby display different effects on the intestine based on their locations; these are known as location‐oriented effects (LOE). The intestinal LOE confer a new biological‐effect profile for nanomaterials, which is dependent on the involvement of the following biological processes: nano–mucus interaction, nano–intestinal epithelial cells (IECs) interaction, nano–immune interaction, and nano–microbiota interaction. A deep understanding of NM‐induced LOE will facilitate the design of safer NMs and the development of more efficient nanomedicine for intestine‐related diseases. Herein, recent progress in this field is reviewed in order to better understand the LOE of nanomaterials. The distant effects of nanomaterials coupling with microbiota are also highlighted. Investigation of the interaction of nanomaterials with the intestine will stimulate other new research areas beyond intestinal nanotoxicity.  相似文献   

20.
One of the unique features of nanomaterials is that they have large surface-to-volume atom ratios compared to bulk materials. The intrinsic compressive stress along the nanowire axis can be as large as tens of GPa, and spontaneous reorientation or phase transformation may occur in order for the nanowires to return to the low-energy state. Upon tensile loading, the nanowires can revert back to the original high-energy orientation or phase without introducing any defects. Two mechanisms are mainly involved in the deformation: (1) twinning/detwinning and (2) stress-induced martensitic phase transformation (MT)/inverse MT. Generally, this surface-induced behavior can only occur at a temperature higher than the critical temperature, Tc, due to the energy barrier for structural transformation. As a result, ordinary nanoscale metals can exhibit pseudo-elasticity and shape memory effects previously only observed from special alloys such as nickel titanium (NiTi). These nanowires have the predicted recoverable strain on the order of 40%–70% which is much larger than that of bulk NiTi (5%–10%), but have extremely low energy dissipation (2% for W nanowires, for example). Surface-induced structural transformation has been observed from fcc, bcc, and hcp single-element metal nanowires, intermetallic alloy nanowires, multilayered and core-shell composite nanowires, and even oxide and nitride compound semiconductor nanowires. This unique phenomenon enables the design of novel and flexible nanoelectromechanical systems (NEMS) having potential applications in nanomanipulators, energy storage, sensors, switches, and so on. We will review the breakthrough and development in this field in the past ten years, mainly focusing on the physical mechanisms and dominant factors governing this spontaneous structural transition. Future developments will also be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号