共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Ivano Alessandri 《Small (Weinheim an der Bergstrasse, Germany)》2010,6(15):1679-1685
A simple strategy for enabling conductive pressure sensitive adhesives (PSAs) to work as light‐responsive materials is reported. Direct laser‐writing of PSA substrates was achieved by means of a continuous‐wave He‐Ne laser focused through the objectives of an optical microscope. This approach takes advantage of cooperative interplay between viscoelastic properties of PSAs and enhanced thermal conductivity provided by an extra overlayer of gold. In particular, the thickness of the gold layer is a crucial parameter for tuning the substrate responsiveness. Self‐healing and self‐degradation processes can be exploited for controlling the lifetime of the written information, whereas additional protective coatings can be introduced to achieve permanent storage. 相似文献
4.
5.
Lei Zhang Guo‐Hong Tao Chun‐Mei Xu Guo‐Hao Zhang Ling He 《Small (Weinheim an der Bergstrasse, Germany)》2020,16(29)
The inorganic semiconductor is an attractive material in sewage disposal and solar power generation. The main challenges associated with environment‐sensitive semiconductors are structural degradation and deactivation caused by the unfavorable environment. Here, inspired by the pomegranate, a self‐protection strategy based on the self‐assembly of silver chloride (AgCl) particles is reported. The distributed photosensitive AgCl particles can be encapsulated by themselves through mixing aqueous silver nitrate and protic ionic liquids (PILs). A probable assembling mechanism is proposed based on the electrostatic potential investigation of PILs cations. The AgCl particles inside the shell maintain their morphology and structure well after 6 months light‐treatment. Moreover, they exhibit excellent photocatalytic activity, same as newly prepared AgCl particles, for degradation of methyl orange (MO), neutral red (NR), bromocresol green (BG), rhodamine B (RhB), Congo red (CR), and crystal violet (CV). 相似文献
6.
Christopher J. Hill Jennifer R. Fleming Masoumeh Mousavinejad Rachael Nicholson Svetomir B. Tzokov Per A. Bullough Julius Bogomolovas Mark R. Morgan Olga Mayans Patricia Murray 《Advanced materials (Deerfield Beach, Fla.)》2019,31(17)
The development of extracellular matrix mimetics that imitate niche stem cell microenvironments and support cell growth for technological applications is intensely pursued. Specifically, mimetics are sought that can enact control over the self‐renewal and directed differentiation of human pluripotent stem cells (hPSCs) for clinical use. Despite considerable progress in the field, a major impediment to the clinical translation of hPSCs is the difficulty and high cost of large‐scale cell production under xeno‐free culture conditions using current matrices. Here, a bioactive, recombinant, protein‐based polymer, termed ZTFn, is presented that closely mimics human plasma fibronectin and serves as an economical, xeno‐free, biodegradable, and functionally adaptable cell substrate. The ZTFn substrate supports with high performance the propagation and long‐term self‐renewal of human embryonic stem cells while preserving their pluripotency. The ZTFn polymer can, therefore, be proposed as an efficient and affordable replacement for fibronectin in clinical grade cell culturing. Further, it can be postulated that the ZT polymer has significant engineering potential for further orthogonal functionalization in complex cell applications. 相似文献
7.
8.
N. Kimizuka 《Advanced materials (Deerfield Beach, Fla.)》2000,12(19):1461-1463
Supramolecular assembly of 1D platinum complexes and synthetic amphiphiles is described here as a strategy for producing inorganic nanowires in solution. It is demonstrated that the electronic states of the complex can be tuned either by the use of suitably designed amphiphiles or by varying the metal species incorporated. The Figure shows the reversible self‐assembly of the molecular wires. 相似文献
9.
10.
Milena Lama Francisco M. Fernandes Alba Marcellan Juliette Peltzer Marina Trouillas Sbastien Banzet Marion Grosbot Clment Sanchez Marie‐Madeleine Giraud‐Guille Jean‐Jacques Lataillade Bernard Coulomb Cdric Boissire Nadine Nassif 《Small (Weinheim an der Bergstrasse, Germany)》2020,16(4)
Extracellular matrices (ECM) rich in type I collagen exhibit characteristic anisotropic ultrastructures. Nevertheless, working in vitro with this biomacromolecule remains challenging. When processed, denaturation of the collagen molecule is easily induced in vitro avoiding proper fibril self‐assembly and further hierarchical order. Here, an innovative approach enables the production of highly concentrated injectable collagen microparticles, based on collagen molecules self‐assembly, thanks to the use of spray‐drying process. The versatility of the process is shown by performing encapsulation of secretion products of gingival mesenchymal stem cells (gMSCs), which are chosen as a bioactive therapeutic product for their potential efficiency in stimulating the regeneration of a damaged ECM. The injection of collagen microparticles in a cell culture medium results in a locally organized fibrillar matrix. The efficiency of this approach for making easily handleable collagen microparticles for encapsulation and injection opens perspectives in active tissue regeneration and 3D bioprinted scaffolds. 相似文献
11.
12.
13.
Amphiphilicity is one of the molecular bases for self‐assembly. By tuning the amphiphilicity of building blocks, controllable self‐assembly can be realized. This article reviews different routes for tuning amphiphilicity and discusses different possibilities for self‐assembly and disassembly in a controlled manner. In general, this includes irreversible and reversible routes. The irreversible routes concern irreversible reactions taking place on the building blocks and changing their molecular amphiphilicity. The building blocks are then able to self‐assemble to form different supramolecular structures, but cannot remain stable upon loss of amphiphilicity. Compared to the irreversible routes, the reversible routes are more attractive due to the good control over the assembly and disassembly of the supramolecular structure formed via tuning of the amphiphilicity. These routes involve reversible chemical reactions and supramolecular approaches, and different external stimuli can be used to trigger reversible changes of amphiphilicity, including light, redox, pH, and enzymes. It is anticipated that this line of research can lead to the fabrication of new functional supramolecular assemblies and materials. 相似文献
14.
15.
16.
17.
Samuel Lim Gi Ahn Jung Dominic J. Glover Douglas S. Clark 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(20)
Precisely organized enzyme complexes are often found in nature to support complex metabolic reactions in a highly efficient and specific manner. Scaffolding enzymes on artificial materials has thus gained attention as a promising biomimetic strategy to design biocatalytic systems with enhanced productivity. Herein, a versatile scaffolding platform that can immobilize enzymes on customizable nanofibers is reported. An ultrastable self‐assembling filamentous protein, the gamma‐prefoldin (γ‐PFD), is genetically engineered to display an array of peptide tags, which can specifically and stably bind enzymes containing the counterpart domain through simple in vitro mixing. Successful immobilization of proteins along the filamentous template in tunable density is first verified using fluorescent proteins. Then, two different model enzymes, glucose oxidase and horseradish peroxidase, are used to demonstrate that scaffold attachment could enhance the intrinsic catalytic activity of the immobilized enzymes. Considering the previously reported ability of γ‐PFD to bind and stabilize a broad range of proteins, the filament's interaction with the bound enzymes may have created a favorable microenvironment for catalysis. It is envisioned that the strategy described here may provide a generally applicable methodology for the scaffolded assembly of multienzymatic complexes for use in biocatalysis. 相似文献
18.
Frank Versluis Jan H. van Esch Rienk Eelkema 《Advanced materials (Deerfield Beach, Fla.)》2016,28(23):4576-4592
Synthetic self‐assembly has long been recognized as an excellent approach for the formation of ordered structures on the nanoscale. Although the development of synthetic self‐assembling materials has often been inspired by principles observed in nature (e.g., the assembly of lipids, DNA, proteins), until recently the self‐assembly of synthetic molecules has mainly been investigated ex vivo. The past few years however, have witnessed the emergence of a research field in which synthetic, self‐assembling systems are used that are capable of operating as bioactive materials in biological environments. Here, this up‐and‐coming field, which has the potential of becoming a key area in chemical biology and medicine, is reviewed. Two main categories of applications of self‐assembly in biological environments are identified and discussed, namely therapeutic and imaging agents. Within these categories key concepts, such as triggers and molecular constraints for in vitro/in vivo self‐assembly and the mode of interaction between the assemblies and the biological materials will be discussed. 相似文献
19.