首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Polysaccharides play a variety of roles in nature, including molecular recognition and water retention. The microscale structures of polysaccharides are seldom utilized in vitro because of the difficulties in regulating self‐assembled structures. Herein, it is demonstrated that a cyanobacterial polysaccharide, sacran, can hierarchically self‐assemble as twisted fibers from nanoscale to microscale with diameters of ≈1 µm and lengths >800 µm that are remarkably larger than polysaccharides previously reported. Unlike other rigid fibrillar polysaccharides, the sacran fiber is capable of flexibly transforming into two‐dimensional (2D) snaking and three‐dimensional (3D) twisted structures at an evaporative air–water interface. Furthermore, a vapor‐sensitive film with a millisecond‐scale response time is developed from the crosslinked polymer due to the spring‐like behavior of twisted structures. This study increases understanding of the functions of fibers in nature and establishes a novel approach to the design of environmentally adaptive materials for soft sensors and actuators.  相似文献   

2.
3.
4.
5.
6.
A simple strategy for enabling conductive pressure sensitive adhesives (PSAs) to work as light‐responsive materials is reported. Direct laser‐writing of PSA substrates was achieved by means of a continuous‐wave He‐Ne laser focused through the objectives of an optical microscope. This approach takes advantage of cooperative interplay between viscoelastic properties of PSAs and enhanced thermal conductivity provided by an extra overlayer of gold. In particular, the thickness of the gold layer is a crucial parameter for tuning the substrate responsiveness. Self‐healing and self‐degradation processes can be exploited for controlling the lifetime of the written information, whereas additional protective coatings can be introduced to achieve permanent storage.  相似文献   

7.
8.
9.
10.
11.
The synthesis and characterization of novel DNA structures based on tetraplex cytosine (C) arrangements, known as i‐motifs or i‐tetraplexes, is reported. Atomic force microscopy (AFM) investigation shows that long C‐strands in mild acidic conditions form compact spherically shaped nanostructures. The DNA nanospheres are characterized by a typical uniform shape and narrow height distribution. Electrostatic force microscopy (EFM) measurements performed on the i‐motif spheres clearly show their electrical polarizability. Further investigations by scanning tunneling microscopy (STM) at ultrahigh vacuum reveals that the structures exhibit an average voltage gap of 1.9 eV, which is narrower than the voltage gap previously measured for poly(dG)–poly(dC) molecules in similar conditions.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号