首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose and demonstrate the fabrication of flexible, freestanding films of InP/ZnS quantum dots (QDs) using fatty acid ligands across very large areas (greater than 50 cm × 50 cm), which have been developed for remote phosphor applications in solid-state lighting. Embedded in a poly(methyl methacrylate) matrix, although the formation of stand-alone films using other QDs commonly capped with trioctylphosphine oxide (TOPO) and oleic acid is not efficient, employing myristic acid as ligand in the synthesis of these QDs, which imparts a strongly hydrophobic character to the thin film, enables film formation and ease of removal even on surprisingly large areas, thereby avoiding the need for ligand exchange. When pumped by a blue LED, these Cd-free QD films allow for high color rendering, warm white light generation with a color rendering index of 89.30 and a correlated color temperature of 2298 K. In the composite film, the temperature-dependent emission kinetics and energy transfer dynamics among different-sized InP/ZnS QDs are investigated and a model is proposed. High levels of energy transfer efficiency (up to 80%) and strong donor lifetime modification (from 18 to 4 ns) are achieved. The suppression of the nonradiative channels is observed when the hybrid film is cooled to cryogenic temperatures. The lifetime changes of the donor and acceptor InP/ZnS QDs in the film as a result of the energy transfer are explained well by our theoretical model based on the exciton-exciton interactions among the dots and are in excellent agreement with the experimental results. The understanding of these excitonic interactions is essential to facilitate improvements in the fabrication of photometrically high quality nanophosphors. The ability to make such large-area, flexible, freestanding Cd-free QD films pave the way for environmentally friendly phosphor applications including flexible, surface-emitting light engines.  相似文献   

2.
Semiconductor quantum dots (QDs) are among the most promising next‐generation optoelectronic materials. QDs are generally obtained through either epitaxial or colloidal growth and carry the promise for solution‐processed high‐performance optoelectronic devices such as light‐emitting diodes (LEDs), solar cells, etc. Herein, a straightforward approach to synthesize perovskite QDs and demonstrate their applications in efficient LEDs is reported. The perovskite QDs with controllable crystal sizes and properties are in situ synthesized through one‐step spin‐coating from perovskite precursor solutions followed by thermal annealing. These perovskite QDs feature size‐dependent quantum confinement effect (with readily tunable emissions) and radiative monomolecular recombination. Despite the substantial structural inhomogeneity, the in situ generated perovskite QDs films emit narrow‐bandwidth emission and high color stability due to efficient energy transfer between nanostructures that sweeps away the unfavorable disorder effects. Based on these materials, efficient LEDs with external quantum efficiencies up to 11.0% are realized. This makes the technologically appealing in situ approach promising for further development of state‐of‐the‐art LED systems and other optoelectronic devices.  相似文献   

3.
Speed, resolution and sensitivity of today's fluorescence bioimaging can be drastically improved by fluorescent nanoparticles (NPs) that are many‐fold brighter than organic dyes and fluorescent proteins. While the field is currently dominated by inorganic NPs, notably quantum dots (QDs), fluorescent polymer NPs encapsulating large quantities of dyes (dye‐loaded NPs) have emerged recently as an attractive alternative. These new nanomaterials, inspired from the fields of polymeric drug delivery vehicles and advanced fluorophores, can combine superior brightness with biodegradability and low toxicity. Here, we describe the strategies for synthesis of dye‐loaded polymer NPs by emulsion polymerization and assembly of pre‐formed polymers. Superior brightness requires strong dye loading without aggregation‐caused quenching (ACQ). Only recently several strategies of dye design were proposed to overcome ACQ in polymer NPs: aggregation induced emission (AIE), dye modification with bulky side groups and use of bulky hydrophobic counterions. The resulting NPs now surpass the brightness of QDs by ≈10‐fold for a comparable size, and have started reaching the level of the brightest conjugated polymer NPs. Other properties, notably photostability, color, blinking, as well as particle size and surface chemistry are also systematically analyzed. Finally, major and emerging applications of dye‐loaded NPs for in vitro and in vivo imaging are reviewed.  相似文献   

4.
Kim K  Jeong S  Woo JY  Han CS 《Nanotechnology》2012,23(6):065602
We report successive and large-scale synthesis of InP/ZnS core/shell nanocrystal quantum dots (QDs) using a customized hybrid flow reactor, which is based on serial combination of a batch-type mixer and a flow-type furnace. InP cores and InP/ZnS core/shell QDs were successively synthesized in the hybrid reactor in a simple one-step process. In this reactor, the flow rate of the solutions was typically 1 ml min(-1), 100 times larger than that of conventional microfluidic reactors. In order to synthesize high-quality InP/ZnS QDs, we controlled both the flow rate and the crystal growth temperature. Finally, we obtained high-quality InP/ZnS QDs in colors from bluish green to red, and we demonstrated that these core/shell QDs could be incorporated into white-light-emitting diode (LED) devices to improve color rendering performance.  相似文献   

5.
Byun HJ  Song WS  Yang H 《Nanotechnology》2011,22(23):235605
The work presents a facile, stepwise synthetic approach for the production of highly fluorescent InP/ZnS core/shell quantum dots (QDs) by using a safer phosphorus (P) precursor. First, InP quantum dots (QDs) were solvothermally prepared at 180?°C for 24 h by using a P source of P(N(CH(3))(2))(3). The as-grown InP QDs were consecutively placed in another solvothermal condition for ZnS shell overcoating. In contrast to the almost non-fluorescent InP QDs, due to their highly defective surface states, the ZnS-coated InP QDs were highly fluorescent as a result of effective surface passivation. After the shell growth, the resulting InP/ZnS core/shell QDs were subjected to a size-sorting processing, by which red- to green-emitting QDs with quantum yields (QYs) of 24-60% were produced. Solvothermal shell growth parameters such as the reaction time and Zn/In solution concentration ratio were varied and optimized toward the highest QYs of core/shell QDs.  相似文献   

6.
The microscopic origin of the bright nanosecond blue‐green photoluminescence (PL), frequently reported for synthesized organically terminated Si quantum dots (Si‐QDs), has not been fully resolved, hampering potential applications of this interesting material. Here a comprehensive study of the PL from alkyl‐terminated Si‐QDs of 2–3 nm size, prepared by wet chemical synthesis is reported. Results obtained on the ensemble and those from the single nano‐object level are compared, and they provide conclusive evidence that efficient and tunable emission arises due to radiative recombination of electron–hole pairs confined in the Si‐QDs. This understanding paves the way towards applications of chemical synthesis for the development of Si‐QDs with tunable sizes and bandgaps.  相似文献   

7.
Carbon-based quantum dots (QDs) have emerged as a fascinating class of advanced materials with a unique combination of optoelectronic, biocompatible, and catalytic characteristics, apt for a plethora of applications ranging from electronic to photoelectrochemical devices. Recent research works have established carbon-based QDs for those frontline applications through improvements in materials design, processing, and device stability. This review broadly presents the recent progress in the synthesis of carbon-based QDs, including carbon QDs, graphene QDs, graphitic carbon nitride QDs and their heterostructures, as well as their salient applications. The synthesis methods of carbon-based QDs are first introduced, followed by an extensive discussion of the dependence of the device performance on the intrinsic properties and nanostructures of carbon-based QDs, aiming to present the general strategies for device designing with optimal performance. Furthermore, diverse applications of carbon-based QDs are presented, with an emphasis on the relationship between band alignment, charge transfer, and performance improvement. Among the applications discussed in this review, much focus is given to photo and electrocatalytic, energy storage and conversion, and bioapplications, which pose a grand challenge for rational materials and device designs. Finally, a summary is presented, and existing challenges and future directions are elaborated.  相似文献   

8.
Many promising graphene‐based materials are kept away from mainstream applications due to problems of scalability and environmental concerns in their processing. Hydro‐/solvothermal techniques overwhelmingly satisfy both the aforementioned criteria, and have matured as alternatives to wet‐chemical methods with advances made over the past few decades. The insolubility of graphene in many solvents poses considerable difficulties in their processing. In this context hydro‐/solvothermal techniques present an ideal opportunity for processing of graphenic materials with their versatility in manipulating the physical and thermodynamic properties of the solvent. The flexibility in hydro‐/solvothermal techniques for manipulation of solvent composition, temperature and pressure provides numerous handles to manipulate graphene‐based materials during synthesis. This review provides a comprehensive look at the subcritical hydro‐/solvothermal synthesis of graphene‐based functional materials and their applications. Several key synthetic strategies governing the morphology and properties of the products such as temperature, pressure, and solvent effects are elaborated. Advances in the synthesis, doping, and functionalization of graphene in hydro‐/solvothermal media are highlighted together with our perspectives in the field.  相似文献   

9.
InP quantum dots (QDs) based light‐emitting diodes (QLEDs) are considered as one of the most promising candidates as a substitute for the environmentally toxic Cd‐based QLEDs for future displays. However, the device architecture of InP QLEDs is almost the same as the Cd‐based QLEDs even though the properties of Cd‐based and InP‐based QDs are quite different in their energy levels and shapes. Thus, it is highly required to develop a proper device structure for InP‐based QLEDs to improve the efficiency and stability. In this work, efficient, bright, and stable InP/ZnSeS QLEDs based on an inverted top emission QLED (ITQLED) structure by newly introducing a “hole‐suppressing interlayer” are demonstrated. The green‐emitting ITQLEDs with the hole‐suppressing interlayer exhibit a maximum current efficiency of 15.1–21.6 cd A?1 and the maximum luminance of 17 400–38 800 cd m?2, which outperform the recently reported InP‐based QLEDs. The operational lifetime is also increased when the hole‐suppressing interlayer is adopted. These superb QLED performances originate not only from the enhanced light‐outcoupling by the top emission structure but also from the improved electron–hole balance by introducing a hole‐suppressing interlayer which can control the hole injection into QDs.  相似文献   

10.
The development of luminescent mercury sulfide quantum dots (HgS QDs) through the bio‐mineralization process has remained unexplored. Herein, a simple, two‐step route for the synthesis of HgS quantum dots in bovine serum albumin (BSA) is reported. The QDs are characterized by UV–vis spectroscopy, Fourier transform infrared (FT‐IR) spectroscopy, luminescence, Raman spectroscopy, transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), circular dichroism (CD), energy dispersive X‐ray analysis (EDX), and picosecond‐resolved optical spectroscopy. Formation of various sizes of QDs is observed by modifying the conditions suitably. The QDs also show tunable luminescence over the 680–800 nm spectral regions, with a quantum yield of 4–5%. The as‐prepared QDs can serve as selective sensor materials for Hg(II) and Cu(II), based on selective luminescence quenching. The quenching mechanism is found to be based on Dexter energy transfer and photoinduced electron transfer for Hg(II) and Cu(II), respectively. The simple synthesis route of protein‐capped HgS QDs would provide additional impetus to explore applications for these materials.  相似文献   

11.
For an optimum performance of colloidal nanocrystal devices for a variety of applications such as photonic devices, solar cells and biological labelling, the determining factors are the nanocrystal surface and size. In this work, these two factors have been tuned via wet chemistry to tailor the material properties: The absorption and emission spectra have been tailored by choice of the nanocrystal size; nanocrystal shape by surface modification and photoluminescence (PL) efficiency determined by surface traps, has been tuned via appropriate selection of the nanocrystal capping ligands. Here, we have shown that through ligand-exchange process, the surface of the CdSe quantum dots (QDs) can be modified by replacing the longer-chain ligands of conventional trioctyl phosphine oxide (TOPO) or oleic acid (OA) with shorter-chain ligand of butyl amine. This imparts colloidal stability and water solubility to CdSe QDs for its potential applications in biosensors and biological imaging. It is conjectured that crystallite sizes, oxidation potential of CdSe QDs and stereochemical compatibility of ligands (TOPO, oleic acid and butyl amine) greatly influences the photophysics and photochemistry of CdSe QDs.  相似文献   

12.
Against general wisdom in crystallization,the nucleation of InP and Ⅲ-Ⅴ quantum dots (QDs) often dominates their growth.Systematic studies on InP QDs identified the key reason for this:the dense and tight alkanoate-ligand shell around each nanocrystal.Different strategies were explored to enable necessary ligand dynamics—i.e.,ligands rapidly switching between being bonded to and detached from a nanocrystal upon thermal agitation—on nanocrystals to simultaneously retain colloidal stability and allow appreciable growth.Among all the surface-activation reagents tested,2,4-diketones (such as acetylacetone) allowed the full growth of InP QDs with indium alkanoates and trimethylsilylphosphine as precursors.While small fatty acids (such as acetic acid) were partially active,common neutral ligands (such as fatty amines,organophosphines,and phosphine oxides) showed limited activation effects.The existing amine-based synthesis of InP QDs was activated by acetic acid formed in situ.Surface activation with common precursors enabled the growth of InP QDs with a distinguishable absorption peak between ~450 and 650 nm at mild temperatures (140-180 ℃).Furthermore,surface activation was generally applicable for InAs and Ⅲ-Ⅴ based core/shell QDs.  相似文献   

13.
In recent years, the rapidly growing attention on MXenes makes the material a rising star in the 2D materials family. Although most researchers' interests are still focused on the properties of bare MXenes, little attention has been paid to the surface chemistry of MXenes and MXene‐based nanocomposites. To this end, this Review offers a comprehensive discussion on surface modified MXene‐based nanocomposites for energy conversion and storage (ECS) applications. Based on the structure and reaction mechanism, the related synthesis methods toward MXenes are briefly summarized. After the discussion of existing surface modification techniques, the surface modified MXene‐based nanocomposites and their inherent chemical principles are presented. Finally, the application of these surface modified nanocomposites for supercapacitors (SCs), lithium/sodium–ion batteries (LIBs/SIBs), and electrocatalytic water splitting is discussed. The challenges and prospects of MXene‐based nanocomposites for future ECS applications are also presented.  相似文献   

14.
In this study, a novel perovskite quantum dot (QD) spray‐synthesis method is developed by combining traditional perovskite QD synthesis with the technique of spray pyrolysis. By utilizing this new technique, the synthesis of cubic‐shaped perovskite QDs with a homogeneous size of 14 nm is demonstrated, which shows an unprecedented stable absolute photoluminescence quantum yield ≈100% in the solution and even in the solid‐state neat film. The highly emissive thin films are integrated with light emission devices (LEDs) and organic light emission displays (OLEDs). The color conversion type QD‐LED (ccQD‐LED) hybrid devices exhibit an extremely saturated green emission, excellent external quantum efficiency of 28.1%, power efficiency of 121 lm W?1, and extraordinary forward‐direction luminescence of 8 500 000 cd m?2. The conceptual ccQD‐OLED hybrid display also successfully demonstrates high‐definition still images and moving pictures with a 119% National Television System Committee 1931 color gamut and 123% Digital Cinema Initiatives‐P3 color gamut. These very‐stable, ultra‐bright perovskite QDs have the properties necessary for a variety of useful applications in optoelectronics.  相似文献   

15.
We explore a strongly interacting QDs/Ag plasmonic coupling structure that enables multiple approaches to manipulate light emission from QDs. Group II–VI semiconductor QDs with unique surface states (SSs) impressively modify the plasmonic character of the contiguous Ag nanostructures whereby the localized plasmons (LPs) in the Ag nanostructures can effectively extract the non‐radiative SSs of the QDs to radiatively emit via SS–LP resonance. The SS–LP coupling is demonstrated to be readily tunable through surface‐state engineering both during QD synthesis and in the post‐synthesis stage. The combination of surface‐state engineering and band‐tailoring engineering allows us to precisely control the luminescence color of the QDs and enables the realization of white‐light emission with single‐size QDs. Being a versatile metal, the Ag in our optical device functions in multiple ways: as a support for the LPs, for optical reflection, and for electrical conduction. Two application examples of the QDs/Ag plasmon coupler for optical devices are given, an Ag microcavity + plasmon‐coupling structure and a new QD light‐emitting diode. The new QDs/Ag plasmon coupler opens exciting possibilities in developing novel light sources and biomarker detectors.  相似文献   

16.
Current efforts on lead sulfide quantum dot (PbS QD) solar cells are mostly paid to the device architecture engineering and postsynthetic surface modification, while very rare work regarding the optimization of PbS synthesis is reported. Here, PbS QDs are successfully synthesized using PbO and PbAc2 · 3H2O as the lead sources. QD solar cells based on PbAc‐PbS have demonstrated a high power conversion efficiency (PCE) of 10.82% (and independently certificated values of 10.62%), which is significantly higher than the PCE of 9.39% for PbO‐PbS QD based ones. For the first time, systematic investigations are carried out on the effect of lead precursor engineering on the device performance. It is revealed that acetate can act as an efficient capping ligands together with oleic acid, providing better surface coverage and replace some of the harmful hydroxyl (OH) ligands during the synthesis. Then the acetate on the surface can be exchanged by iodide and lead to desired passivation. This work demonstrates that the precursor engineering has great potential in performance improvement. It is also pointed out that the initial synthesis is an often neglected but critical stage and has abundant room for optimization to further improve the quality of the resultant QDs, leading to breakthrough efficiency.  相似文献   

17.
Quantum dots (QDs) are being highlighted in display applications for their excellent optical properties, including tunable bandgaps, narrow emission bandwidth, and high efficiency. However, issues with their stability must be overcome to achieve the next level of development. QDs are utilized in display applications for their photoluminescence (PL) and electroluminescence. The PL characteristics of QDs are applied to display or lighting applications in the form of color‐conversion QD films, and the electroluminescence of QDs is utilized in quantum dot light‐emitting diodes (QLEDs). Studies on the stability of QDs and QD devices in display applications are reviewed herein. QDs can be degraded by oxygen, water, thermal heating, and UV exposure. Various approaches have been developed to protect QDs from degradation by controlling the composition of their shells and ligands. Phosphorescent QDs have been protected by bulky ligands, physical incorporation in polymer matrices, and covalent bonding with polymer matrices. The stability of electroluminescent QLEDs can be enhanced by using inorganic charge transport layers and by improving charge balance. As understanding of the degradation mechanisms of QDs increases and more stable QDs and display devices are developed, QDs are expected to play critical roles in advanced display applications.  相似文献   

18.
Boron nitride quantum dots (BNQDs), as a new member of heavy metal‐free quantum dots, have aroused great interest in fundamental research and practical application due to their unique physical/chemical properties. However, it is still a challenge to controllably synthesize high‐quality BNQDs with high quantum yield (QY), uniform size and strong fluorescent. In this work, BNQDs have been successfully fabricated by the liquid exfoliation and the subsequent solvothermal process with respect to its facileness and easy large scale up. Importantly, BNQDs with high‐quality can be controllably obtained by adjusting the synthetic parameters involved in the solvothermal process including filling factor, synthesis temperature, and duration time. Encouragingly, the as‐prepared BNQDs possess strong blue luminescence with QY as high as 19.5%, which can be attributed to the synergetic effect of size, surface chemistry and edge defects. In addition, this strategy presented here provides a new reference for the controllable synthesis of other heavy metal‐free QDs. Furthermore, the as‐prepared BNQDs are non‐toxic to cells and exhibit nanosecond‐scaled lifetimes, suggesting they have great potential biological and optoelectronic applications.  相似文献   

19.
The synthesis of quantum dots (QDs) using wet chemistry with photoluminescent (PL) properties suitable to be used as biomarkers is a challenge yet to be overcome. Thus, this study demonstrates that the optical properties of aqueous colloidal semiconductor QDs can be engineered by altering the stoichiometric ratio of reagents achieving PL behavior comparable to systems using core–shell heterostructures. Here, it is reported the “bottom-up” approach for preparing quantum dot-polymer conjugates. A straightforward one-pot synthesis of CdSe nanocrystals was conducted using carboxylic functionalized poly (vinyl alcohol) as capping ligand by methods of aqueous colloidal chemistry at room temperature. Different molar ratios of reagents (Cd2+:Se2−) were prepared for investigating the effect on the kinetics of nucleation and growth of colloidal quantum dots (CQD) and their respective influence on the density of defects. These systems were characterized by UV–vis Spectroscopy, Photoluminescence Spectroscopy, and Transmission Electron Microscopy. Small QDs were produced with average particle size of 2.9 nm. The results have showed the influence of the ratio of the reagents on the photoluminescent behavior of the CQDs. Thus, a relatively facile colloidal route was developed for synthesizing water-soluble quantum dots-polymer conjugates that may potentially offer countless choices in nanotechnology for biomedical applications.  相似文献   

20.
Hybrid materials have found widespread applications in recent years and are one example for the bottom‐up approach to nanotechnology: materials and phases are generated by physical or chemical means from precursor compounds forming nanoscale or nanocomposite materials. This review describes basic principles and several applications of inorganic–organic polymers using organically crosslinked heteropolysiloxanes (ORMOCERs) based on the sequential synthesis of inorganic and organic networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号