首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
海上风力发电机组基础的选择   总被引:3,自引:0,他引:3  
介绍了海上风力发电的发展现状,结合海上采油平台形式,对海上风电机组采用的基础定义、基础类型及其选择进行了介绍。  相似文献   

2.
通过气固两相流实验考查了风机叶片材料在不同风速、不同粒径下的冲蚀磨损率。采用FLUENT软件对相应实验条件进行数值模拟表明:随着风速的提高,磨粒所具有的动能与切应力也随之增大,当风速由7.9 m/s提高到17.4 m/s时,达到最大冲蚀率为0.004 32 kg/(m2·s);冲蚀率随着粒径的增大呈现先上升后下降的趋势,当粒径为0.109~0.212 mm时,磨粒对试样的最大冲蚀率为0.001 51 kg/(m2·s)。模拟验证了实验所得的冲蚀规律,并预测了各实验条件下的最大理论冲蚀率。  相似文献   

3.
Direct numerical simulations were carried out for an S822 wind turbine blade section at a chord Reynolds number of Re = 100, 000 and an angle of attack of α = 5°. Results for a stationary non‐rotating blade section compare favorably with wind tunnel data by the University of Illinois at Urbana‐Champaign and XFoil predictions. By adding volume forcing terms to the right‐hand side of the Navier–Stokes equations, the Coriolis and centrifugal accelerations resulting from blade rotation are modeled in the blade section simulations. Blade rotation is shown to delay separation especially near the hub, resulting in a lift increase of up to 100% and a drag reduction. The simulations provide insight into a physical mechanism that offers an explanation for the lift increase observed for rotating blade sections when compared with stationary blade sections, which is commonly referred to as rotational augmentation. Rotation is shown to lead to a radial velocity component toward the blade tip in areas where the velocity is substantially different from its free‐stream value, such as near the stagnation point and especially in the separated flow region, and to the appearance of stationary and traveling crossflow vortices. A linear stability theory analysis that compares favorably with the simulation data provides proof that the primary instabilities are of a mixed type, including both a two‐dimensional mode (Tollmien–Schlichting and Kelvin–Helmholtz type) and a stationary and unsteady crossflow mode. The crossflow instabilities accelerate transition, leading to separation delay, lift increase and drag reduction. This effect is very pronounced at 20% blade radius and still present at 80% radius. Because periodicity conditions were applied in the spanwise direction, the present results provide an explanation for rotational augmentation that is not based on the transfer of fluid from the inboard region toward the blade tip (‘centrifugal pumping’). For the low Reynolds number conditions considered here, crossflow instabilities, which destabilize the flow leading to earlier transition and a separation delay, may contribute to rotational augmentation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
An active tuned mass damper (ATMD) is employed for damping of tower vibrations of fixed offshore wind turbines, where the additional actuator force is controlled using feedback from the tower displacement and the relative velocity of the damper mass. An optimum tuning procedure equivalent to the tuning procedure of the passive tuned mass damper combined with a simple procedure for minimizing the control force is employed for determination of optimum damper parameters and feedback gain values. By time domain simulations conducted in an aeroelastic code, it is demonstrated that the ATMD can be used to further reduce the structural response of the wind turbine compared with the passive tuned mass damper and this without an increase in damper mass. A limiting factor of the design of the ATMD is the displacement of the damper mass, which for the ATMD, increases to compensate for the reduction in mass. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
As wind turbines continue to grow in size, it becomes increasingly important to ensure that they are as structurally efficient as possible to ensure that wind energy can be a cost‐effective source of power generation. A way to achieve this is through weight reductions in the blades of the wind turbine. In this study, topology optimization is used to find alternative structural configurations for a 45 m blade from a 3 MW wind turbine. The result of the topology optimization is a layout that varies along the blade length, transitioning from a structure with trailing edge reinforcement to one with offset spar caps. Sizing optimization was then performed on a section with the trailing edge reinforcement and was shown to offer potential weight savings of 13.8% when compared with a more conventional design. These findings indicate that the conventional structural layout of a wind turbine blade is sub‐optimal under the static load conditions that were applied, suggesting an opportunity to reduce blade weight and cost. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
叶片是风力机的重要构件,对其合理设计十分重要。总结了叶片的设计流程,并选择合理的设计参数,设计出兆瓦级风力机的叶片;在三维绘图软件中建模;应用有限元法,选定叶片的材料参数,在有限元软件中对叶片进行模态分析,确定了叶片的各阶模态振型及各阶频率,并对比分析叶片各阶模态振型结果。结果表明,叶片的固有频率范围与外界的激励的频率范围不重合,因此避免了共振破坏的发生。  相似文献   

7.
The concept of a smart wind turbine system   总被引:1,自引:0,他引:1  
A smart wind turbine concept with variable length blades and an innovative hybrid mechanical-electrical power conversion system was analyzed. The variable length blade concept uses the idea of extending the turbine blades when wind speeds fall below rated level, hence increasing the swept area, and thus maintaining a relatively high power output. It is shown for a typical site, that the annual energy output of such a wind turbine that could double its blade length, could be twice that of a corresponding turbine with fixed length blades. From a cost analysis, it is shown that the concept would be feasible if the cost of the rotor could be kept less than 4.3 times the cost of a standard rotor with fixed length blades. Given the variable length blade turbine system exhibits a more-or-less linear maximum power curve, as opposed to a non-linear curve for the standard turbine, an innovative hybrid mechanical-electrical power conversion system was proposed and tested proving the feasibility of the concept.  相似文献   

8.
Correct turbulence intensity modeling is crucial for fatigue load estimation for wind turbine structural design. It is well known that the International Electrotechnical Commission 61400‐3 Normal Turbulence Model recommended for offshore wind turbine design is not representative of offshore wind conditions. A new model is urgently needed as offshore wind energy is rapidly developing worldwide. After evaluating the suitability of the Normal Turbulence Model at three sites in Asia, Europe and the USA, it is found that wind–wave interaction and stability correction should be taken into account in modeling the offshore turbulence intensity and wind speed relationship. Therefore, a new turbulence intensity model, which models wind–wave interaction with the Charnock equation and adjusts for the influence of atmospheric stability through empirical turbulence scaling functions for the unstable atmospheric boundary layer, was developed. The new model is physically based and is tested against observations from the three sites. It shows better performance than the Normal Turbulence Model and hence is recommended to replace the Normal Turbulence Model. For model application, only two parameters are required, which are defined herein to represent offshore sites with high, medium and low turbulence intensities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a design tool for optimizing wind turbine blades. The design model is based on an aerodynamic/aero‐elastic code that includes the structural dynamics of the blades and the Blade Element Momentum (BEM) theory. To model the main aero‐elastic behaviour of a real wind turbine, the code employs 11 basic degrees of freedom corresponding to 11 elastic structural equations. In the BEM theory, a refined tip loss correction model is used. The objective of the optimization model is to minimize the cost of energy which is calculated from the annual energy production and the cost of the rotor. The design variables used in the current study are the blade shape parameters, including chord, twist and relative thickness. To validate the implementation of the aerodynamic/aero‐elastic model, the computed aerodynamic results are compared to experimental data for the experimental rotor used in the European Commision‐sponsored project Model Experiments in Controlled Conditions, (MEXICO) and the computed aero‐elastic results are examined against the FLEX code for flow past the Tjæreborg 2 MW rotor. To illustrate the optimization technique, three wind turbine rotors of different sizes (the MEXICO 25 kW experimental rotor, the Tjæreborg 2 MW rotor and the NREL 5 MW virtual rotor) are applied. The results show that the optimization model can reduce the cost of energy of the original rotors, especially for the investigated 2 MW and 5 MW rotors. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
高原和海洋的风能资源丰富,更能发挥大容量风力发电机组的优势,利用前景广阔。但高原和海上的自然环境恶劣,对风机承载部件——塔筒的防腐要求更为严格。针对在高原和海上运行的特种风机,分析了塔筒的腐蚀环境,研究了塔筒的防腐原理,提出了塔筒的具体防腐措施和防腐方案,为特种风机塔筒的防腐提供了参考。  相似文献   

11.
Korea has huge potential for offshore wind energy and the first Korean offshore wind farm has been initiated off the southwest coast. With increasing water depth, different substructures of the offshore wind turbine, such as the jacket and multipile, are the increasing focus of attention because they appear to be cost-effective. However, these substructures are still in the early stages of development in the offshore wind industry. The aim of the present study was to design a suitable substructure, such as a jacket or multipile, to support a 5 MW wind turbine in 33 m deep water for the Korean Southwest Offshore Wind Farm. This study also aimed to compare the dynamic responses of different substructures including the monopile, jacket and multipile and evaluate their feasibility. We therefore performed an eigenanalysis and a coupled aero-hydro-servo-elastic simulation under deterministic and stochastic conditions in the environmental conditions in Korea. The results showed that the designed jacket and multipile substructures, together with the modified monopile, were well located at soft–stiff intervals, where most modern utility-scale wind turbine support structures are designed. The dynamic responses of the different substructures showed that of the three substructures, the performance of the jacket was very good. In addition, considering the simple configuration of the multipile, which results in lower manufacturing cost, this substructure can provide another possible solution for Korean’s first offshore wind farm. This study provides knowledge that can be applied for the deployment of large-scale offshore wind turbines in intermediate water depths in Korea.  相似文献   

12.
The aerodynamic characteristics of a kind of bionic wind turbine blades with a sinusoidal leading edge have been investigated in this paper based on a three‐dimensional Reynolds‐averaged Navier–Stokes simulation. The calculated results show that compared with a straight leading‐edge blade, the new‐type blade has a great improvement in shaft torque at high wind speeds. The localized vortices shedding from the leading‐edge tubercles, which can generate a much greater peak of the leading‐edge suction pressure than that from the straight leading‐edge case, are the physical essentials to enhance the wavy blade's aerodynamic performances as the blade goes into stall. In particular, the outboard segment from the 60%R station to the blade tip is the key region for wavy leading‐edge blades to improve the aerodynamic characteristics at high‐speed inflows. In this key region, a wavy blade can obtain a greater power output as the wavelength l and the waveheight δ increase. The present numerical results also show that the wavy leading‐edge shape is unfavorable for a wind turbine blade under the design conditions (e.g., at the rated wind speed). At these conditions, an early boundary‐layer separation as a result of the geometric disturbances of the leading‐edge tubercles will inevitably result in a visible shaft‐torque reduction in the wavy‐blade cases. Anyway, the wavy blades still tend to generate a more robust power output as a whole from 10 to 20 m s ?1 than the original NREL phase‐VI blade. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
针对某电厂汽轮机末级叶片断裂后修整再用这一实际情况,应用FINE/Turbo软件模拟断裂前后的流场,讨论、分析末级叶片断裂后对汽轮机末级及其它各级性能的影响,得出如下结论:汽轮机效率降低、汽耗增加。各级后压力升高,汽轮机轴向推力、扭矩降低;各级压力参数相对于未断裂时有所降低,特别是次末级出口压力参数降低最多;叶片断裂处速度分布不均匀、变化较剧烈,在叶顶处形成了较大的回流区,流动损失加大。  相似文献   

14.
For wind turbine blades with the increased slenderness ratio, flutter instability may occur at lower wind and rotational speeds. For long blades, at the flutter condition, relative velocities at blade sections away from the hub center are usually in the subsonic compressible range. In this study, for the first time for composite wind turbine blades, a frequency domain classical flutter analysis methodology has been presented including the compressibility effect only for the outboard blade sections, which are in the compressible flow regime exceeding Mach 0.3. Flutter analyses have been performed for the baseline blade designed for the 5‐MW wind turbine of NREL. Beam‐blade model has been generated by making analogy with the structural model of the prewisted rotating thin‐walled beam (TWB) and variational asymptotic beam section (VABS) method has been utilized for the calculation of the sectional properties of the blade. To investigate the compressibility effect on the flutter characteristics of the blade, frequency and time domain aeroelastic analyses have been conducted by utilizing unsteady aerodynamics via incompressible and compressible indicial functions. This study shows that with use of compressible indicial functions, the effect of compressibility can be taken into account effectively in the frequency domain aeroelastic stability analysis of long blades whose outboard sections are inevitably in the compressible flow regime at the onset of flutter.  相似文献   

15.
A database of meteorological and ocean conditions is presented for use in offshore wind energy research and design. The original data are from 23 ocean sites around the USA and were obtained from the National Data Buoy Center run by the National Oceanic and Atmospheric Administration. The data are presented in a processed form that includes the variables of interest for offshore wind energy design: wind speed, significant wave height, wave peak‐spectral period, wind direction and wave direction. For each site, a binning process is conducted to create conditional probability functions for each of these variables. The sites are then grouped according to geographic location and combined to create three representative sites, including a West Coast site, an East Coast site and a Gulf of Mexico site. Both the processed data and the probability distribution parameters for the individual and representative sites are being hosted on a publicly available domain by the National Renewable Energy Laboratory, with the intent of providing a standard basis of comparison for meteorological and ocean conditions for offshore wind energy research worldwide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a novel framework for the structural design and analysis of wind turbine blades and establishes its accuracy. The framework is based on a beam model composed of two parts—a 2D finite element‐based cross‐section analysis tool and a 3D beam finite element model. The cross‐section analysis tool is able to capture the effects stemming from material anisotropy and inhomogeneity for sections of arbitrary geometry. The proposed framework is very efficient and therefore ideally suited for integration within wind turbine aeroelastic design and analysis tools. A number of benchmark examples are presented comparing the results from the proposed beam model to 3D shell and solid finite element models. The examples considered include a square prismatic beam, an entire wind turbine rotor blade and a detailed wind turbine blade cross section. Phenomena at both the blade length scale—deformation and eigenfrequencies—and cross section scale—3D material strain and stress fields—are analyzed. Furthermore, the effect of the different assumptions regarding the boundary conditions is discussed in detail. The benchmark examples show excellent agreement suggesting that the proposed framework is a highly efficient alternative to 3D finite element models for structural analysis of wind turbine blades. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The aerodynamic performance of offshore floating wind turbines (OFWTs) is more complicated than onshore wind turbines due to 6‐degree of freedom (DOF) motion of the floating platform. In the current study, the aerodynamic analysis of a horizontal‐axis floating offshore wind turbine is performed with the aim of studying the effects of floating platform movement on the aerodynamic characteristics of the turbine in the presence of a pitch angle control system. The National Renewable Energy Laboratory (NREL) 5‐MW offshore wind turbine is selected as the baseline wind turbine. For this sake, the unsteady blade element momentum method with dynamic stall and dynamic inflow models have been employed to obtain the unsteady aerodynamic loads. The baseline pitch angle control system is assumed to be coupled with the aerodynamic model to maintain the rated condition of the wind turbine and also to approach a closer model of wind turbine. In case of pitching motion input, the reduction of mean power coefficient for tip speed ratios (TSRs) less that 7 is expected by an amount of 16% to 20% at pitch amplitude of 2° and frequency of 0.1 Hz. For high TSRs, the trend is reverse with respect to fixed‐platform case. The mean thrust coefficient is reduced for almost all range of TSRs with maximum loss of 37%. Moreover, the mean control pitch angle that is an index of control system effort is increased. The results also represent the importance of considering the pitch control system for aerodynamic analysis of disturbed OFWT.  相似文献   

18.
Understanding of power losses and turbulence increase due to wind turbine wake interactions in large offshore wind farms is crucial to optimizing wind farm design. Power losses and turbulence increase due to wakes are quantified based on observations from Middelgrunden and state‐of‐the‐art models. Observed power losses due solely to wakes are approximately 10% on average. These are relatively high for a single line of wind turbines due in part to the close spacing of the wind farm. The wind farm model Wind Analysis and Application Program (WAsP) is shown to capture wake losses despite operating beyond its specifications for turbine spacing. The paper describes two methods of estimating turbulence intensity: one based on the mean and standard deviation (SD) of wind speed from the nacelle anemometer, the other from mean power output and its SD. Observations from the nacelle anemometer indicate turbulence intensity which is around 9% higher in absolute terms than those derived from the power measurements. For comparison, turbulence intensity is also derived from wind speed and SD from a meteorological mast at the same site prior to wind farm construction. Despite differences in the measurement height and period, overall agreement is better between the turbulence intensity derived from power measurements and the meteorological mast than with those derived from data from the nacelle anemometers. The turbulence in wind farm model indicates turbulence increase of the order 20% in absolute terms for flow directly along the row which is in good agreement with the observations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Renewable energy is one of the main pillars of sustainable development, especially in developing economies. Increasing energy demand and the limitation of fossil fuel reserves make the use of renewable energy essential for sustainable development. Wind energy is considered to be one of the most important resources of renewable energy. In North African countries, such as Egypt, wind energy has an enormous potential; however, it faces quite a number of technical challenges related to the performance of wind turbines in the Saharan environment. Seasonal sand storms affect the performance of wind turbines in many ways, one of which is increasing the wind turbine aerodynamic resistance through the increase of blade surface roughness. The power loss because of blade surface deterioration is significant in wind turbines. The surface roughness of wind turbine blades deteriorates because of several environmental conditions such as ice or sand. This paper is the first review on the topic of surface roughness effects on the performance of horizontal‐axis wind turbines. The review covers the numerical simulation and experimental studies as well as discussing the present research trends to develop a roadmap for better understanding and improvement of wind turbine performance in deleterious environments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
大连近海风电场风机机组的选型与布置初探   总被引:1,自引:0,他引:1  
风机的选型与布置是风电场建设可行性研究的重要内容,对风电场的建设造价和投产后的发电效益有重要的影响。文章在大连近海风资源评估的基础上,综合考虑国内外风力发电机组的制造水平、技术成熟程度,选择4种机型,布置在两个参考场址,预测其理论发电量,通过技术经济比较,选出最佳机型。一号场址的水文地质条件比较利于风机布置,可安装34台单机容量为3 MW的风力发电机组,布置方式为2排17列,年上网发电量约为26 262万kWh。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号