首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Inspired by its high‐active and open layered framework for fast Li+ extraction/insertion reactions, layered Ni‐rich oxide is proposed as an outstanding Na‐intercalated cathode for high‐performance sodium‐ion batteries. An O3‐type Na0.75Ni0.82Co0.12Mn0.06O2 is achieved through a facile electrochemical ion‐exchange strategy in which Li+ ions are first extracted from the LiNi0.82Co0.12Mn0.06O2 cathode and Na+ ions are then inserted into a layered oxide framework. Furthermore, the reaction mechanism of layered Ni‐rich oxide during Na+ extraction/insertion is investigated in detail by combining ex situ X‐ray diffraction, X‐ray photoelectron spectroscopy, and electron energy loss spectroscopy. As an excellent cathode for Na‐ion batteries, O3‐type Na0.75Ni0.82Co0.12Mn0.06O2 delivers a high reversible capacity of 171 mAh g?1 and a remarkably stable discharge voltage of 2.8 V during long‐term cycling. In addition, the fast Na+ transport in the cathode enables high rate capability with 89 mAh g?1 at 9 C. The as‐prepared Ni‐rich oxide cathode is expected to significantly break through the limited performance of current sodium‐ion batteries.  相似文献   

3.
4.
5.
Nanoscale surface‐engineering plays an important role in improving the performance of battery electrodes. Nb2O5 is one typical model anode material with promising high‐rate lithium storage. However, its modest reaction kinetics and low electrical conductivity obstruct the efficient storage of larger ions of sodium or potassium. In this work, partially surface‐amorphized and defect‐rich black niobium oxide@graphene (black Nb2O5?x@rGO) nanosheets are designed to overcome the above Na/K storage problems. The black Nb2O5?x@rGO nanosheets electrodes deliver a high‐rate Na and K storage capacity (123 and 73 mAh g?1, respectively at 3 A g?1) with long‐term cycling stability. Besides, both Na‐ion and K‐ion full batteries based on black Nb2O5?x@rGO nanosheets anodes and vanadate‐based cathodes (Na0.33V2O5 and K0.5V2O5 for Na‐ion and K‐ion full batteries, respectively) demonstrate promising rate and cycling performance. Notably, the K‐ion full battery delivers higher energy and power densities (172 Wh Kg?1 and 430 W Kg?1), comparable to those reported in state‐of‐the‐art K‐ion full batteries, accompanying with a capacity retention of ≈81.3% over 270 cycles. This result on Na‐/K‐ion batteries may pave the way to next‐generation post‐lithium batteries.  相似文献   

6.
Aqueous rechargeable zinc–manganese dioxide batteries show great promise for large‐scale energy storage due to their use of environmentally friendly, abundant, and rechargeable Zn metal anodes and MnO2 cathodes. In the literature various intercalation and conversion reaction mechanisms in MnO2 have been reported, but it is not clear how these mechanisms can be simultaneously manipulated to improve the charge storage and transport properties. A systematical study to understand the charge storage mechanisms in a layered δ‐MnO2 cathode is reported. An electrolyte‐dependent reaction mechanism in δ‐MnO2 is identified. Nondiffusion controlled Zn2+ intercalation in bulky δ‐MnO2 and control of H+ conversion reaction pathways over a wide C‐rate charge–discharge range facilitate high rate performance of the δ‐MnO2 cathode without sacrificing the energy density in optimal electrolytes. The Zn‐δ‐MnO2 system delivers a discharge capacity of 136.9 mAh g?1 at 20 C and capacity retention of 93% over 4000 cycles with this joint charge storage mechanism. This study opens a new gateway for the design of high‐rate electrode materials by manipulating the effective redox reactions in electrode materials for rechargeable batteries.  相似文献   

7.
8.
9.
10.
Potassium‐ion batteries (PIBs) configurated by organic electrodes have been identified as a promising alternative to lithium‐ion batteries. Here, a porous organic Polyimide@Ketjenblack is demonstrated in PIBs as a cathode, which exhibits excellent performance with a large reversible capacity (143 mAh g?1 at 100 mA g?1), high rate capability (125 and 105 mAh g?1 at 1000 and 5000 mA g?1), and long cycling stability (76% capacity retention at 2000 mA g?1 over 1000 cycles). The domination of fast capacitive‐like reaction kinetics is verified, which benefits from the porous structure synthesized using in situ polymerization. Moreover, a renewable and low‐cost full cell is demonstrated with superior rate behavior (106 mAh g?1 at 3200 mA g?1). This work proposes a strategy to design polymer electrodes for high‐performance organic PIBs.  相似文献   

11.
Aluminum metal is a high‐energy‐density carrier with low cost, and thus endows rechargeable aluminum batteries (RABs) with the potential to act as an inexpensive and efficient electrochemical device, so as to supplement the increasing demand for energy storage and conversion. Despite the enticing aspects regarding cost and energy density, the poor reversibility of electrodes has limited the pursuit of RABs for a long time. Fortunately, ionic‐liquid electrolytes enable reversible aluminum plating/stripping at room temperature, and they lay the very foundation of RABs. In order to integrate with the aluminum‐metal anode, the selection of the cathode is pivotal, but is limited at present. The scant option of a reliable cathode can be accounted for by the intrinsic high charge density of Al3+ ions, which results in sluggish diffusion. Hence, reliable cathode materials are a key challenge of burgeoning RABs. Herein, the main focus is on the insertion cathodes for RABs also termed aluminum‐ion batteries, and the recent progress and optimization methods are summarized. Finally, an outlook is presented to navigate the possible future work.  相似文献   

12.
The most promising cathode materials, including LiCoO2 (layered), LiMn2O4 (spinel), and LiFePO4 (olivine), have been the focus of intense research to develop rechargeable lithium‐ion batteries (LIBs) for portable electronic devices. Sluggish lithium diffusion, however, and unsatisfactory long‐term cycling performance still limit the development of present LIBs for several applications, such as plug‐in/hybrid electric vehicles. Motivated by the success of graphene and novel 2D materials with unique physical and chemical properties, herein, a simple shear‐assisted mechanical exfoliation method to synthesize few‐layered nanosheets of LiCoO2, LiMn2O4, and LiFePO4 is used. Importantly, these as‐prepared nanosheets with preferred orientations and optimized stable structures exhibit excellent C‐rate capability and long‐term cycling performance with much reduced volume expansion during cycling. In particular, the zero‐strain insertion phenomenon could be achieved in 2–3 such layers of LiCoO2 electrode materials, which could open up a new way to the further development of next‐generation long‐life and high‐rate batteries.  相似文献   

13.
The recharge ability of zinc metal‐based aqueous batteries is greatly limited by the zinc anode. The poor cycling durability of Zn anodes is attributed to the dendrite growth, shape change and passivation, but this issue has been ignored by using an excessive amount of Zn in the past. Herein, a 3D nanoporous (3D NP) Zn–Cu alloy is fabricated by a sample electrochemical‐assisted annealing thermal method combined, which can be used directly as self‐supported electrodes applied for renewable zinc‐ion devices. The 3D NP architectures electrode offers high electron and ion transport paths and increased material loading per unit substrate area, which can uniformly deposit/strip Zn and improve charge storage ability. Benefiting from the intrinsic materials and architectures features, the 3D NP Zn–Cu alloy anode exhibits high areal capacity and excellent cycling stability. Further, the fabricated high‐voltage double electrolyte aqueous Zn–Br2 battery can deliver maximum areal specific capacity of ≈1.56 mAh cm?2, which is close to the level of typical commercial Li‐ion batteries. The excellent performance makes it an ideal candidate for next‐generation aqueous zinc‐ion batteries.  相似文献   

14.
The development of high‐capacity, Earth‐abundant, and stable cathode materials for robust aqueous Zn‐ion batteries is an ongoing challenge. Herein, ultrathin nickel cobaltite (NiCo2O4) nanosheets with enriched oxygen vacancies and surface phosphate ions (P–NiCo2O4‐x) are reported as a new high‐energy‐density cathode material for rechargeable Zn‐ion batteries. The oxygen‐vacancy and surface phosphate‐ion modulation are achieved by annealing the pristine NiCo2O4 nanosheets using a simple phosphating process. Benefiting from the merits of substantially improved electrical conductivity and increased concentration of active sites, the optimized P–NiCo2O4‐x nanosheet electrode delivers remarkable capacity (309.2 mAh g?1 at 6.0 A g?1) and extraordinary rate performance (64% capacity retention at 60.4 A g?1). Moreover, based on the P–NiCo2O4‐x cathode, our fabricated P–NiCo2O4‐x//Zn battery presents an impressive specific capacity of 361.3 mAh g?1 at the high current density of 3.0 A g?1 in an alkaline electrolyte. Furthermore, extremely high energy density (616.5 Wh kg?1) and power density (30.2 kW kg?1) are also achieved, which outperforms most of the previously reported aqueous Zn‐ion batteries. This ultrafast and high‐energy aqueous Zn‐ion battery is promising for widespread application to electric vehicles and intelligent devices.  相似文献   

15.
16.
Rechargeable aqueous zinc–ion batteries have offered an alternative for large‐scale energy storage owing to their low cost and material abundance. However, developing suitable cathode materials with excellent performance remains great challenges, resulting from the high polarization of zinc ion. In this work, an aqueous zinc–ion battery is designed and constructed based on H2V3O8 nanowire cathode, Zn(CF3SO3)2 aqueous electrolyte, and zinc anode, which exhibits the capacity of 423.8 mA h g−1 at 0.1 A g−1, and excellent cycling stability with a capacity retention of 94.3% over 1000 cycles. The remarkable electrochemical performance is attributed to the layered structure of H2V3O8 with large interlayer spacing, which enables the intercalation/de‐intercalation of zinc ions with a slight change of the structure. The results demonstrate that exploration of the materials with large interlayer spacing is an effective strategy for improving electrochemical stability of electrodes for aqueous Zn ion batteries.  相似文献   

17.
18.
Nanostructured materials lie at the heart of fundamental advances in efficient energy storage and/or conversion, in which surface processes and transport kinetics play determining roles. This Review describes some recent developments in the synthesis and characterization of nanostructured cathode materials, including lithium transition metal oxides, vanadium oxides, manganese oxides, lithium phosphates, and various nanostructured composites. The major goal of this Review is to highlight some new progress in using these nanostructured materials as cathodes to develop lithium batteries with high energy density, high rate capability, and excellent cycling stability resulting from their huge surface area, short distance for mass and charge transport, and freedom for volume change in nanostructured materials.  相似文献   

19.
Sodium‐ion batteries (SIBs) have been considered as potential candidates for stationary energy storage because of the low cost and wide availability of Na sources. O3‐type layered oxides have been considered as one of the most promising cathodes for SIBs. However, they commonly show inevitable complicated phase transitions and sluggish kinetics, incurring rapid capacity decline and poor rate capability. Here, a series of sodium‐sufficient O3‐type NaNi0.5Mn0.5‐ x Ti x O2 (0 ≤ x ≤ 0.5) cathodes for SIBs is reported and the mechanisms behind their excellent electrochemical performance are studied in comparison to those of their respective end‐members. The combined analysis of in situ X‐ray diffraction, ex situ X‐ray absorption spectroscopy, and scanning transmission electron microscopy for NaNi0.5Mn0.2Ti0.3O2 reveals that the O3‐type phase transforms reversibly into a P3‐type phase upon Na+ deintercalation/intercalation. The substitution of Ti for Mn enlarges interslab distance and could restrain the unfavorable and irreversible multiphase transformation in the high voltage regions that is usually observed in O3‐type NaNi0.5Mn0.5O2, resulting in improved Na cell performance. This integration of macroscale and atomicscale engineering strategy might open up the modulation of the chemical and physical properties in layered oxides and grasp new insight into the optimal design of high‐performance cathode materials for SIBs.  相似文献   

20.
In situ monitoring the evolution of electrode materials in micro/nano scale is crucial to understand the intrinsic mechanism of rechargeable batteries. Here a novel on‐chip Langmuir–Blodgett nanowire (LBNW) microdevice is designed based on aligned and assembled MnO2 nanowire quasimonolayer films for directly probing Zn‐ion batteries (ZIBs) in real‐time. With an interdigital device configuration, a splendid Ohmic contact between MnO2 LBNWs and pyrolytic carbon current collector is demonstrated here, enabling a small polarization voltage. In addition, this work reveals, for the first time, that the conductance of MnO2 LBNWs monotonically increases/decreases when the ZIBs are charged/discharged. Multistep phase transition is mainly responsible for the mechanism of the ZIBs, as evidenced by combined high‐resolution transmission electron microscopy and in situ Raman spectroscopy. This work provides a new and adaptable platform for microchip‐based in situ simultaneous electrochemical and physical detection of batteries, which would promote the fundamental and practical research of nanowire electrode materials in energy storage applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号