首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By combining two kinds of solution‐processable two‐dimensional materials, a flexible transistor array is fabricated in which MoS2 thin film is used as the active channel and reduced graphene oxide (rGO) film is used as the drain and source electrodes. The simple device configuration and the 1.5 mm‐long MoS2 channel ensure highly reproducible device fabrication and operation. This flexible transistor array can be used as a highly sensitive gas sensor with excellent reproducibility. Compared to using rGO thin film as the active channel, this new gas sensor exhibits much higher sensitivity. Moreover, functionalization of the MoS2 thin film with Pt nanoparticles further increases the sensitivity by up to ~3 times. The successful incorporation of a MoS2 thin‐film into the electronic sensor promises its potential application in various electronic devices.  相似文献   

2.
Abnormal protein aggregates, so called amyloid fibrils, are mainly known as pathological hallmarks of a wide range of diseases, but in addition these robust well‐ordered self‐assembled natural nanostructures can also be utilized for creating distinct nanomaterials for bioelectronic devices. However, current methods for producing amyloid fibrils in vitro offer no spatial control. Herein, we demonstrate a new way to produce and spatially control the assembly of amyloid‐like structures using an organic electronic ion pump (OEIP) to pump distinct cations to a reservoir containing a negatively charged polypeptide. The morphology and kinetics of the created proteinaceous nanomaterials depends on the ion and current used, which we leveraged to create layers incorporating different conjugated thiophene derivatives, one fluorescent (p‐FTAA) and one conducting (PEDOT‐S). We anticipate that this new application for the OEIP will be useful for both biological studies of amyloid assembly and fibrillogenesis as well as for creating new bioelectronic nanomaterials and devices.  相似文献   

3.
Materials capable of actuation through remote stimuli are crucial for untethering soft robotic systems from hardware for powering and control. Fluidic actuation is one of the most applied and versatile actuation strategies in soft robotics. Here, the first macroscale soft fluidic actuator is derived that operates remotely powered and controlled by light through a plasmonically induced phase transition in an elastomeric constraint. A multiphase assembly of a liquid layer of concentrated gold nanoparticles in a silicone or styrene–ethylene–butylene–styrene elastic pocket forms the actuator. Upon laser excitation, the nanoparticles convert light of specific wavelength into heat and initiate a liquid‐to‐gas phase transition. The related pressure increase inflates the elastomers in response to laser wavelength, intensity, direction, and on–off pulses. During laser‐off periods, heating halts and condensation of the gas phase renders the actuation reversible. The versatile multiphase materials actuate—like soft “steam engines”—a variety of soft robotic structures (soft valve, pnue‐net structure, crawling robot, pump) and are capable of operating in different environments (air, water, biological tissue) in a single configuration. Tailored toward the near‐infrared window of biological tissue, the structures actuate also through animal tissue for potential medical soft robotic applications.  相似文献   

4.
Flexible power sources have shown great promise in next‐generation bendable, implantable, and wearable electronic systems. Here, flexible and binder‐free electrodes of Na3V2(PO4)3/reduced graphene oxide (NVP/rGO) and Sb/rGO nanocomposites for sodium‐ion batteries are reported. The Sb/rGO and NVP/rGO paper electrodes with high flexibility and tailorability can be easily fabricated. Sb and NVP nanoparticles are embedded homogenously in the interconnected framework of rGO nanosheets, which provides structurally stable hosts for Na‐ion intercalation and deintercalation. The NVP/rGO paper‐like cathode delivers a reversible capacity of 113 mAh g?1 at 100 mA g?1 and high capacity retention of ≈96.6% after 120 cycles. The Sb/rGO paper‐like anode gives a highly reversible capacity of 612 mAh g?1 at 100 mA g?1, an excellent rate capacity up to 30 C, and a good cycle performance. Moreover, the sodium‐ion full cell of NVP/rGO//Sb/rGO has been fabricated, delivering a highly reversible capacity of ≈400 mAh g?1 at a current density of 100 mA g?1 after 100 charge/discharge cycles. This work may provide promising electrode candidates for developing next‐generation energy‐storage devices with high capacity and long cycle life.  相似文献   

5.
Implementation of artificial intelligent systems with light‐stimulated synaptic emulators may enhance computational speed by providing devices with high bandwidth, low power computation requirements, and low crosstalk. One of the key challenges is to develop light‐stimulated devices that can response to light signals in a neuron‐/synapse‐like fashion. A simple and effective solution process to fabricate light‐stimulated synaptic transistors (LSSTs) based on inorganic halide perovskite quantum dots (IHP QDs) and organic semiconductors (OSCs) is reported. Blending IHP QDs and OSCs not only improves the charge separation efficiency of the photoexcited charges, but also induces delayed decay of the photocurrent in the IHP QDs/OSCs hybrid film. The enhanced charge separation efficiency results in high photoresponsivity, while the induced delayed decay of the photocurrent is critical to achieving light‐stimulating devices with a memory effect, which are important for achieving high synaptic performance. The LSSTs can respond to light signals in a highly neuron‐/synapse‐like fashion. Both short‐term and long‐term synaptic behaviors have been realized, which may lay the foundation for the future implementation of artificial intelligent systems that are enabled by light signals. More significantly, LSSTs are fabricated by a facile solution process which can be easily applied to large‐scale samples.  相似文献   

6.
Radio‐frequency (RF) electronics, which combine passive electromagnetic devices and active transistors to generate and process gigahertz (GHz) signals, provide a critical basis of ever‐pervasive wireless networks. While transistors are best realized by top‐down fabrication, relatively larger electromagnetic passives are within the reach of printing techniques. Here, direct writing of viscoelastic silver‐nanoparticle inks is used to produce a broad array of RF passives operating up to 45 GHz. These include lumped devices such as inductors and capacitors, and wave‐based devices such as transmission lines, their resonant networks, and antennas. Moreover, to demonstrate the utility of these printed RF passive structures in active RF electronic circuits, they are combined with discrete transistors to fabricate GHz self‐sustained oscillators and synchronized oscillator arrays that provide RF references, and wireless transmitters clocked by the oscillators. This work demonstrates the synergy of direct ink writing and RF electronics for wireless applications.  相似文献   

7.
Flexible thin‐film sensors have been developed for practical uses in invasive or noninvasive cost‐effective healthcare devices, which requires high sensitivity, stretchability, biocompatibility, skin/organ‐conformity, and often transparency. Graphene nanoplatelets can be spontaneously assembled into transparent and conductive ultrathin coatings on micropatterned surfaces or planar substrates via a convective Marangoni force in a highly controlled manner. Based on this versatile graphene assembled film preparation, a thin, stretchable and skin‐conformal sensor array (144 pixels) is fabricated having microtopography‐guided, graphene‐based, conductive patterns embedded without any complicated processes. The electrically controlled sensor array for mapping spatial distributions (144 pixels) shows high sensitivity (maximum gauge factor ≈1697), skin‐like stretchability (<48%), high cyclic stability or durability (over 105 cycles), and the signal amplification (≈5.25 times) via structure‐assisted intimate‐contacts between the device and rough skin. Furthermore, given the thin‐film programmable architecture and mechanical deformability of the sensor, a human skin‐conformal sensor is demonstrated with a wireless transmitter for expeditious diagnosis of cardiovascular and cardiac illnesses, which is capable of monitoring various amplified pulse‐waveforms and evolved into a mechanical/thermal‐sensitive electric rubber‐balloon and an electronic blood‐vessel. The microtopography‐guided and self‐assembled conductive patterns offer highly promising methodology and tool for next‐generation biomedical devices and various flexible/stretchable (wearable) devices.  相似文献   

8.
We designed and constructed reduced graphene oxide (rGO) functionalized high electron mobility transistor (HEMT) for rapid and ultra‐sensitive detection of label‐free DNA in real time. The micrometer sized rGO sheets with structural defects helped absorb DNA molecules providing a facile and robust approach to functionalization. DNA was immobilized onto the surface of HEMT gate through rGO functionalization, and changed the conductivity of HEMT. The real time monitor and detection of DNA hybridization by rGO functionalized HEMT presented interesting current responses: a “two steps” signal enhancement in the presence of target DNA; and a “one step” signaling with random DNA. These two different recognition patterns made the HEMT capable of specifically detecting target DNA sequence. The working principle of the rGO functionalized HEMT can be demonstrated as the variation of the ambience charge distribution. Furthermore, the as constructed DNA sensors showed excellent sensitivity of detect limit at 0.07 fM with linear detect range from 0.1 fM to 0.1 pM. The results indicated that the HEMT functionalized with rGO paves a new avenue to design novel electronic devices for high sensitive and specific genetic material assays in biomedical applications.  相似文献   

9.
Carbon nanomaterials have excellent humidity sensing properties. Here, it is demonstrated that multiwalled carbon‐nanotube (MWCNT)‐ and reduced‐graphene‐oxide (rGO)‐based conductive films have opposite humidity/electrical resistance responses: MWCNTs increase their electrical resistance (positive response) and rGOs decrease their electrical resistance (negative response). The authors propose a new phenomenology that describes a “net”‐like model for MWCNT films and a “scale”‐like model for rGO films to explain these behaviors based on contributions from junction resistances (at interparticle junctions) and intrinsic resistances (of the particles). This phenomenology is accordingly validated via a series of experiments, which complement more classical models based on proton conductivity. To explore the practical applications of the converse humidity/resistance responses, a humidity‐insensitive MWCNT/rGO hybrid conductive films is developed, which has the potential to greatly improve the stability of carbon‐based electrical device to humidity. The authors further investigate the application of such films to human‐finger electronics by fabricating transparent flexible devices consisting of a polyethylene terephthalate substrate equipped with an MWCNT/rGO pattern for gesture recognition, and MWCNT/rGO/MWCNT or rGO/MWCNT/rGO patterns for 3D noncontact sensing, which will be complementary to existing 3D touch technology.  相似文献   

10.
Shape memory alloys (SMAs) are widely utilized as an actuation source in microscale devices, since they have a simple actuation mechanism and high‐power density. However, they have limitations in terms of strain range and actuation speed. High‐speed microscale SMA actuators are developed having diamond‐shaped frame structures with a diameter of 25 µm. These structures allow for a large elongation range compared with bulk SMA materials, with the aid of spring‐like behavior under tensile deformation. These actuators are validated in terms of their applicability as an artificial muscle in microscale by investigating their behavior under mechanical deformation and changes in thermal conditions. The shape memory effect is triggered by delivering thermal energy with a laser. The fast heating and cooling phenomenon caused by the scale effect allows high‐speed actuation up to 1600 Hz. It is expected that the proposed actuators will contribute to the development of soft robots and biomedical devices.  相似文献   

11.
The integration of swellable metal–organic frameworks (MOFs) into polymeric composite films is a straightforward strategy to develop soft materials that undergo reversible shape transformations derived from the intrinsic flexibility of MOF crystals. However, a crucial step toward their practical application relies on the ability to attain specific and programmable actuation, which enables the design of self‐shaping objects on demand. Herein, a chemical etching method is demonstrated for the fabrication of patterned composite films showing tunable self‐folding response, predictable and reversible 2D‐to‐3D shape transformations triggered by water adsorption/desorption. These films are fabricated by selective removal of swellable MOF crystals allowing control over their spatial distribution within the polymeric film. Upon exposure to moisture, various programmable 3D architectures, which include a mechanical gripper, a lift, and a unidirectional walking device, are generated. Remarkably, these 2D‐to‐3D shape transformations can be reversed by light‐induced desorption. The reported strategy offers a platform for fabricating flexible MOF‐based autonomous soft mechanical devices with functionalities for micromanipulation, automation, and robotics.  相似文献   

12.
Hierarchical self‐assembly is achieved using a visible light triggered photoreaction. A pro‐gelator, α‐diketone‐2,3‐didecyloxyanthracene, is photoconverted into a low molecular weight gelator, 2,3‐didecyloxyanthracene (DDOA), that self‐assembles into nanofibers. Spatial confinement and patterns of these nanofibers onto a surface are achieved by localizing initial nucleation with a focused laser and photogenerate subsequent fiber growth with the laser or gentler wide‐field irradiation. Remarkably, collective growth of nanofibers results in anisotropic micropatterns with orientation factors (OF) reaching 79%, resulting in collective emission of linearly polarized light. The OF, distance of collective growth and fiber density, are controlled by the photoirradiation conditions and the balance of interactions between DDOA aggregates and the glass surface. An unprecedented juxtaposition of orthogonally oriented nanofiber patterns on an isotropic surface is achieved with individual control of the fibers' main direction. In perspective, this photochemical method can be extended to a large variety of self‐assembling molecules.  相似文献   

13.
Multifunctional applications including efficient microwave absorption and electromagnetic interference (EMI) shielding as well as excellent Li-ion storage are rarely achieved in a single material. Herein, a multifunctional nanocrystalline-assembled porous hierarchical NiO@NiFe2O4/reduced graphene oxide (rGO) heterostructure integrating microwave absorption, EMI shielding, and Li-ion storage functions is fabricated and tailored to develop high-performance energy conversion and storage devices. Owing to its structural and compositional advantages, the optimized NiO@NiFe2O4/15rGO achieves a minimum reflection loss of −55 dB with a matching thickness of 2.3 mm, and the effective absorption bandwidth is up to 6.4 GHz. The EMI shielding effectiveness reaches 8.69 dB. NiO@NiFe2O4/15rGO exhibits a high initial discharge specific capacity of 1813.92 mAh g−1, which reaches 1218.6 mAh g−1 after 289 cycles and remains at 784.32 mAh g−1 after 500 cycles at 0.1 A g−1. In addition, NiO@NiFe2O4/15rGO demonstrates a long cycling stability at high current densities. This study provides an insight into the design of advanced multifunctional materials and devices and provides an innovative method of solving current environmental and energy problems.  相似文献   

14.
The ability to control light direction with tailored precision via facile means is long‐desired in science and industry. With the advances in optics, a periodic structure called diffraction grating gains prominence and renders a more flexible control over light propagation when compared to prisms. Today, diffraction gratings are common components in wavelength division multiplexing devices, monochromators, lasers, spectrometers, media storage, beam steering, and many other applications. Next‐generation optical devices, however, demand nonmechanical, full and remote control, besides generating higher than 1D diffraction patterns with as few optical elements as possible. Liquid crystals (LCs) are great candidates for light control since they can form various patterns under different stimuli, including periodic structures capable of behaving as diffraction gratings. The characteristics of such gratings depend on several physical properties of the LCs such as film thickness, periodicity, and molecular orientation, all resulting from the internal constraints of the sample, and all of these are easily controllable. In this review, the authors summarize the research and development on stimuli‐controllable diffraction gratings and beam steering using LCs as the active optical materials. Dynamic gratings fabricated by applying external field forces or surface treatments and made of chiral and nonchiral LCs with and without polymer networks are described. LC gratings capable of switching under external stimuli such as light, electric and magnetic fields, heat, and chemical composition are discussed. The focus is on the materials, designs, applications, and future prospects of diffraction gratings using LC materials as active layers.  相似文献   

15.
The ingenious design of a freestanding flexible electrode brings the possibility for power sources in emerging wearable electronic devices. Here, reduced graphene oxide (rGO) wraps carbon nanotubes (CNTs) and rGO tightly surrounded by MnO2 nanosheets, forming a 3D multilevel porous conductive structure via vacuum freeze‐drying. The sandwich‐like architecture possesses multiple functions as a flexible anode for lithium‐ion batteries. Micrometer‐sized pores among the continuously waved rGO layers could extraordinarily improve ion diffusion. Nano‐sized pores among the MnO2 nanosheets and CNT/rGO@MnO2 particles could provide vast accessible active sites and alleviate volume change. The tight connection between MnO2 and carbon skeleton could facilitate electron transportation and enhance structural stability. Due to the special structure, the rGO‐wrapped CNT/rGO@MnO2 porous film as an anode shows a high capacity, excellent rate performance, and superior cycling stability (1344.2 mAh g−1 over 630 cycles at 2 A g−1, 608.5 mAh g−1 over 1000 cycles at 7.5 A g−1). Furthermore, the evolutions of microstructure and chemical valence occurring inside the electrode after cycling are investigated to illuminate the structural superiority for energy storage. The excellent electrochemical performance of this freestanding flexible electrode makes it an attractive candidate for practical application in flexible energy storage.  相似文献   

16.
Artificial microcilia structures have shown potential to incorporate actuators in various applications such as microfluidic devices and biomimetic microrobots. Among the multiple possibilities to achieve cilia actuation, magnetic fields present an opportunity given their quick response and wireless operation, despite the difficulty in achieving localized actuation because of their continuous distribution. In this work, a high-aspect-ratio (>8), elastomeric, magnetically responsive microcilia array is presented that allows for wireless, localized actuation through the combined use of light and magnetic fields. The microcilia array can move in response to an external magnetic field and can be locally actuated by targeted illumination of specific areas. The periodic pattern of the microcilia also diffracts light with varying diffraction efficiency as a function of the applied magnetic field, showing potential for wirelessly controlled adaptive optical elements.  相似文献   

17.
Abstract

This work describes amorphous fluorinated polymer films deposited by pulsed plasma polymerizations of octafluorotoluene (PPP‐OFT) monomers on ITO glass as the hole‐injection layer of organic electroluminescent (EL) devices, in order to study the influence of sample position and duty cycle on PPP‐OFT film characteristics, and also to find a good process to yield a higher retention degree of monomers and lower roughness of PPP‐OFT fluorocarbon films. Experimental results revealed that PPP‐OFT films deposited at positions far away from the RF coil and close to the monomer inlet showed less roughness than films deposited near the high RF‐flux regions. In addition, the retention of the monomers in the PPP‐OFT layer will be high if the deposition is conducted near the monomer inlet but some distance away from the RF electrode. Moreover, amorphous fluorinated polymer films can be deposited with higher fluorine to carbon (F/C) ratios and CF2 contents at proper substrate positions by means of different sticking coefficients of free radicals dissociated by octafluorotoluene monomers.  相似文献   

18.
The photoactuation of pen arrays made of polydimethylsiloxane carbon nanotube composites is explored, and the first demonstration of photoactuated pens for molecular printing is reported. Photoactuation of these composites is characterized using atomic force microscopy and found to produce microscale motion in response to modest illumination, with an actuation efficiency as high as 200 nm mW?1 on the sub‐1 s time scale. Arrays of composite pens are synthesized and it is found that local illumination is capable of moving selected pens by more than 3 µm out of the plane, bringing them into contact to perform controllable and high quality printing while completely shutting off the nonilluminated counterparts. In light of the scalability limitations of nanolithography, this work presents an important step and paves the way for arbitrary control of individual pens in massive arrays. As an example of a scalable soft actuator, this approach can also aid progress in other fields such as soft robotics and microfluidics.  相似文献   

19.
Golden bristlegrass‐like unique nanostructures comprising reduced graphene oxide (rGO) matrixed nanofibers entangled with bamboo‐like N‐doped carbon nanotubes (CNTs) containing CoSe2 nanocrystals at each node (denoted as N‐CNT/rGO/CoSe2 NF) are designed as anodes for high‐rate sodium‐ion batteries (SIBs). Bamboo‐like N‐doped CNTs (N‐CNTs) are successfully generated on the rGO matrixed nanofiber surface, between rGO sheets and mesopores, and interconnected chemically with homogeneously distributed rGO sheets. The defects in the N‐CNTs formed by a simple etching process allow the complete phase conversion of Co into CoSe2 through the efficient penetration of H2Se gas inside the CNT walls. The N‐CNTs bridge the vertical defects for electron transfer in the rGO sheet layers and increase the distance between the rGO sheets during cycles. The discharge capacity of N‐CNT/rGO/CoSe2 NF after the 10 000th cycle at an extremely high current density of 10 A g?1 is 264 mA h g?1, and the capacity retention measured at the 100th cycle is 89%. N‐CNT/rGO/CoSe2 NF has final discharge capacities of 395, 363, 328, 304, 283, 263, 246, 223, 197, 171, and 151 mA h g?1 at current densities of 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 A g?1, respectively.  相似文献   

20.
The iris, found in many animal species, is a biological tissue that can change the aperture (pupil) size to regulate light transmission into the eye in response to varying illumination conditions. The self‐regulation of the eye lies behind its autofocusing ability and large dynamic range, rendering it the ultimate “imaging device” and a continuous source of inspiration in science. In optical imaging devices, adjustable apertures play a vital role as they control the light exposure, the depth of field, and optical aberrations of the systems. Tunable irises demonstrated to date require external control through mechanical actuation, and are not capable of autonomous action in response to changing light intensity without control circuitry. A self‐regulating artificial iris would offer new opportunities for device automation and stabilization. Here, this paper reports the first iris‐like, liquid crystal elastomer device that can perform automatic shape‐adjustment by reacting to the incident light power density. Similar to natural iris, the device closes under increasing light intensity, and upon reaching the minimum pupil size, reduces the light transmission by a factor of seven. The light‐responsive materials design, together with photoalignment‐based control over the molecular orientation, provides a new approach to automatic, self‐regulating optical systems based on soft smart materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号