首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
微流控芯片检测技术进展   总被引:3,自引:0,他引:3  
对近年来用于微流控芯片的光学检测(包括荧光、吸收光度和电化学发光检测等)、电化学检测(电导检测、电位检测及安培检测)的发展和其他一些检测方法的研究成果进行了综述,随着微加工技术的不断发展,高速多通道检测以及集成多种方法的高通用性微流控检测芯片都将成为未来的研究热点。  相似文献   

2.
本文综述了溶胶-凝胶法的基本原理,以及国内溶胶-凝胶法制备纳米羟基磷灰石的研究进展,提出了有待解决的问题。  相似文献   

3.
目的 探究纸基微流控芯片的发展现状,为纸基微流控芯片进一步研发和推广应用提供借鉴和参考。方法 通过调研文献,根据检测原理及印刷制备工艺对纸基微流控芯片进行阐述,然后对微流控芯片在食品安全检测中的应用研究进展进行总结。结果 纸基微流控芯片适用于比色法、荧光法、电化学法及表面增强拉曼光谱等多种检测方法,印刷制备工艺也呈现多样化发展趋势。纸基微流控芯片检测技术成功应用于食品添加剂、污染物、成分分析及智能食品包装等安全检测领域。结论 纸基微流控芯片应用潜力巨大,仍需进一步优化技术工艺以克服制约其发展的潜在瓶颈问题。  相似文献   

4.
羟基磷灰石是人体骨骼的主要无机成分,具有良好的生物相容性和生物活性,能与新生骨形成很强的化学键合,是植入生物陶瓷材料研究的重点物质之一。微波烧结具有快速加热,能量利用率高,操作简便,过程易于控制等特点,被誉为“21世纪新一代烧结技术”。综述了微波烧结的基本原理,以及国内外微波法制备纳米羟基磷灰石的研究进展,提出了有待解决的问题。  相似文献   

5.
White polymer light‐emitting devices (WPLEDs) have become a field of immense interest in both scientific and industrial communities. They have unique advantages such as low cost, light weight, ease of device fabrication, and large area manufacturing. Applications of WPLEDs for solid‐state lighting are of special interest because about 20% of the generated electricity on the earth is consumed by lighting. To date, incandescent light bulbs (with a typical power efficiency of 12–17 lm W?1) and fluorescent lamps (about 40–70 lm W?1) are the most widely used lighting sources. However, incandescent light bulbs convert 90% of their consumed power into heat while fluorescent lamps contain a small but significant amount of toxic mercury in the tube, which complicates an environmentally friendly disposal. Remarkably, the device performances of WPLEDs have recently been demonstrated to be as efficient as those of fluorescent lamps. Here, we summarize the recent advances in WPLEDs with special attention paid to the design of novel luminescent dopants and device structures. Such advancements minimize the gap (for both efficiency and stability) from other lighting sources such as fluorescent lamps, light‐emitting diodes based on inorganic semiconductors, and vacuum‐deposited small‐molecular devices, thus rendering WPLEDs equally competitive as these counterparts currently in use for illumination purposes.  相似文献   

6.
微型热电器件的研究进展   总被引:1,自引:0,他引:1  
综述了微型热电器件的材料学基础、主要结构和重要应用,剖析了三者之间的相互关系,指出了微型热电器件的发展所面临的问题,并探讨了其今后的发展趋势.  相似文献   

7.
纳米多孔金属镍材料的研制成功,开拓了多孔金属新的应用领域。综述了脱合金法从Ni—Al合金中制备纳米多孔镍材料的必要条件,并十分析了脱元素法和脱相法各自的特点。脱元素法获得的纳米多孔镍的结构是三维无序内部互连通孔结构,而脱相法会产生原有的γ相或γ’相与多孔结构互相交织的网状结构,其中互通孔道大多为几百纳米宽。脱相法是个电化学控制的过程,脱元素法不需要加电压。同时,指出了纳米多孔镍基材料的应用领域及今后的研究方向。  相似文献   

8.
Polymeric dielectrics play a key role in the realization of flexible organic electronics, especially for the fabrication of scalable device arrays and integrated circuits. Among a wide variety of polymeric dielectric materials, aromatic polyimides (PIs) are flexible, lightweight, and strongly resistant to high‐temperature processing and corrosive etchants and, therefore, have become promising candidates as gate dielectrics with good feasibility in manufacturing organic electronic devices. More significantly, the characteristics of PIs can be conveniently modulated by the design of their chemical structures. Herein, from the perspective of structure optimization and interface engineering, a brief overview of recent progress in PI‐based dielectrics for organic electronic devices and circuits is provided. Also, an outlook of future research directions and challenges for polyimide dielectric materials is presented.  相似文献   

9.
高温润滑脂的研究进展   总被引:2,自引:0,他引:2  
润滑脂的高温性能主要是由基础油、稠化剂、添加剂和填料所决定的.其中稠化剂和添加剂对润滑脂的高温性能起着重要的作用,是研究热点和重点.对高温润滑脂的基础油、稠化剂、添加剂和填料的研究情况和进展进行简要介绍,对国内外的差距进行简要分析.论述了高温润滑脂的应用和发展前景.  相似文献   

10.
Stretchable electronic devices with intrinsically stretchable components have significant inherent advantages, including simple fabrication processes, a high integrity of the stacked layers, and low cost in comparison with stretchable electronic devices based on non‐stretchable components. The research in this field has focused on developing new intrinsically stretchable components for conductors, semiconductors, and insulators. New methodologies and fabrication processes have been developed to fabricate stretchable devices with intrinsically stretchable components. The latest successful examples of stretchable conductors for applications in interconnections, electrodes, and piezoresistive devices are reviewed here. Stretchable conductors can be used for electrode or sensor applications depending on the electrical properties of the stretchable conductors under mechanical strain. A detailed overview of the recent progress in stretchable semiconductors, stretchable insulators, and other novel stretchable materials is also given, along with a discussion of the associated technological innovations and challenges. Stretchable electronic devices with intrinsically stretchable components such as field‐effect transistors (FETs), photodetectors, light‐emitting diodes (LEDs), electronic skins, and energy harvesters are also described and a new strategy for development of stretchable electronic devices is discussed. Conclusions and future prospects for the development of stretchable electronic devices with intrinsically stretchable components are discussed.  相似文献   

11.
Many inorganic and organic materials exhibit redox states with distinct electronic (UV‐vis) absorption bands. When the switching of redox states generates new or different visible region bands, the material is electrochromic. Electrochromic materials are currently attracting much interest in academia and industry for both their fascinating spectroelectrochemical properties and their commercial applications. In this review some of the most important examples from the major classes of electrochromic materials are highlighted. Examples of their use in both prototype and commercial electrochromic devices are illustrated including car mirrors, windows and sun‐roofs of cars, windows of buildings, displays (see Figure), printing, and frozen‐food monitoring.  相似文献   

12.
13.
有机电致发光器件的研究进展   总被引:1,自引:1,他引:0  
杨定宇  蒋孟衡  杨军 《材料导报》2007,21(11):38-40,49
有机电致发光器件(OELD)具有驱动电压低,功耗小,亮度高,响应速度快等优点,由其制作有机发光显示器件已被视为下一代最理想的显示技术.在简要介绍OELD器件结构、发光机理和制备工艺的基础上系统阐述了有机发光材料、OELD显示器件及驱动技术的研究进展,最后展望了该领域目前存在的问题及可能的解决方向.  相似文献   

14.
Recent progress in electronic skin or e‐skin research is broadly reviewed, focusing on technologies needed in three main applications: skin‐attachable electronics, robotics, and prosthetics. First, since e‐skin will be exposed to prolonged stresses of various kinds and needs to be conformally adhered to irregularly shaped surfaces, materials with intrinsic stretchability and self‐healing properties are of great importance. Second, tactile sensing capability such as the detection of pressure, strain, slip, force vector, and temperature are important for health monitoring in skin attachable devices, and to enable object manipulation and detection of surrounding environment for robotics and prosthetics. For skin attachable devices, chemical and electrophysiological sensing and wireless signal communication are of high significance to fully gauge the state of health of users and to ensure user comfort. For robotics and prosthetics, large‐area integration on 3D surfaces in a facile and scalable manner is critical. Furthermore, new signal processing strategies using neuromorphic devices are needed to efficiently process tactile information in a parallel and low power manner. For prosthetics, neural interfacing electrodes are of high importance. These topics are discussed, focusing on progress, current challenges, and future prospects.  相似文献   

15.
柔性电致变色器件研究进展   总被引:1,自引:0,他引:1  
电致变色材料是一类重要的光电功能材料,可以随周期性调整的电压改变颜色。这种可控的光学吸收率和透过率的调制在智能窗户、电致变色显示和防眩光后视镜等应用场合大显身手。近年来电致变色技术发展迅速,但当前的研究大多集中在传统刚性电致变色器件,通常以氧化铟锡(ITO)等导电玻璃为基底。这些刚性变色器件存在厚度大、共型性差、机械强度低、成本高等不可忽视的问题,阻碍了电致变色技术及其商业化的发展。伴随着开发可穿戴设备和电子皮肤等其他未来技术的热潮,柔性电致变色器件因其可折叠性、可穿戴性甚至可嵌入性而备受关注,已跻身成为电致变色领域的研究热点。本综述从制备柔性电致变色器件的材料出发,系统地概述了无机、有机、无机/有机复合及其他新型柔性电致变色器件最新进展和趋势,着重介绍了可拉伸电致变色器件的国内外研究进展。同时讨论了现阶段柔性电致变色器件在性能提升和实际应用等方面遇到的挑战,以及国内外研究者采取的应对措施。最后明确了柔性电致变色器件制备与提升性能的关键,并对未来的发展趋势做出展望。  相似文献   

16.
With recent progress in the design of materials and mechanics, opportunities have arisen to improve optoelectronic devices, circuits, and systems in curved, flexible, stretchable, and biocompatible formats, thereby enabling integration of customized optoelectronic devices and biological systems. Here, the core material technologies of biointegrated optoelectronic platforms are discussed. An overview of the design and fabrication methods to form semiconductor materials and devices in flexible and stretchable formats is presented, strategies incorporating various heterogeneous substrates, interfaces, and encapsulants are discussed, and their applications in biomimetic, wearable, and implantable systems are highlighted.  相似文献   

17.
Microplasmas are low-temperature plasmas that feature microscale dimensions and a unique high-energy-density and a nonequilibrium reactive environment, which makes them promising for the fabrication of advanced nanomaterials and devices for diverse applications. Here, recent microplasma applications are examined, spanning from high-throughput, printing-technology-compatible synthesis of nanocrystalline particles of common materials types, to water purification and optoelectronic devices. Microplasmas combined with gaseous and/or liquid media at low temperatures and atmospheric pressure open new ways to form advanced functional materials and devices. Specific examples include gas-phase, substrate-free, plasma-liquid, and surface-supported synthesis of metallic, semiconducting, metal oxide, and carbon-based nanomaterials. Representative applications of microplasmas of particular importance to materials science and technology include light sources for multipurpose, efficient VUV/UV light sources for photochemical materials processing and spectroscopic materials analysis, surface disinfection, water purification, active electromagnetic devices based on artificial microplasma optical materials, and other devices and systems including the plasma transistor. The current limitations and future opportunities for microplasma applications in materials related fields are highlighted.  相似文献   

18.
Although dialyzer reuse for home hemodialysis (done by patients at home) has been in practice since the 1960s, it is now almost completely abandoned. The need for dialyzer reuse resurfaced with the renewed interest in daily/nightly forms of home hemodialysis and the associated increase in operating costs. We describe a method of dialyzer reuse based on reprocessing of dialyzers at the center, after they had been stored in a refrigerator at home for 1 week by the patient. Transportation of the dialyzers by either the patient or a transportation service was acceptable to the patients. Despite the lower number of reuses, possibly related to the delayed processing, dialyzer reuse in this setting provided significant financial benefits. Experience with this process for 3 years has not disclosed any negative effects after the initial logistical issues related to dialyzer transportation were resolved. In summary, weekly dialyzer reprocessing at the center provides a solution to the need for dialyzer reuse for the home hemodialysis patient.  相似文献   

19.
20.
Cell migration is an essential bioactive ceramics property and critical for bone induction, clinical application, and mechanism research. Standardized cell migration detection methods have many limitations, including a lack of dynamic fluid circulation and the inability to simulate cell behavior in vivo. Microfluidic chip technology, which mimics the human microenvironment and provides controlled dynamic fluid cycling, has the potential to solve these questions and generate reliable models of cell migration in vitro. In this study, a microfluidic chip is reconstructed to integrate the bioactive ceramic into the microfluidic chip structure to constitute a ceramic microbridge microfluidic chip system. Migration differences in the chip system are measured. By combining conventional detection methods with new biotechnology to analyze the causes of cell migration differences, it is found that the concentration gradients of ions and proteins adsorbed on the microbridge materials are directly related to the occurrence of cell migration behavior, which is consistent with previous reports and demonstrates the effectiveness of the microfluidic chip model. This model provides in vivo environment simulation and controllability of input and output conditions superior to standardized cell migration detection methods. The microfluidic chip system provides a new approach to studying and evaluating bioactive ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号