首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
纳米多孔金属镍材料的研制成功,开拓了多孔金属新的应用领域。综述了脱合金法从Ni—Al合金中制备纳米多孔镍材料的必要条件,并十分析了脱元素法和脱相法各自的特点。脱元素法获得的纳米多孔镍的结构是三维无序内部互连通孔结构,而脱相法会产生原有的γ相或γ’相与多孔结构互相交织的网状结构,其中互通孔道大多为几百纳米宽。脱相法是个电化学控制的过程,脱元素法不需要加电压。同时,指出了纳米多孔镍基材料的应用领域及今后的研究方向。  相似文献   

2.
    
Nano or microsized particles have been a research focus for decades, and the advancement of microfluidic technologies provides alternative strategies for the synthesis of such materials for various applications. Recent advances of using different microfluidic devices (MDs), including continuous laminar flow, segmented flow, droplet‐based, and other non‐chip‐based microreactors, for the synthesis of nano or microsized particles with specific properties are reviewed, along with their biomedical applications. Different categories of particles fabricated in MDs are summarized to highlight the wide application of the processing platform in the development of novel functional materials.  相似文献   

3.
    
Solid materials, such as silicon, glass, and polymers, dominate as structural elements in microsystems including microfluidics. Porous elements have been limited to membranes sandwiched between microchannel layers or polymer monoliths. This paper reports the use of micropatterned carbon-nanotube forests confined inside microfluidic channels for mechanically and/or chemically capturing particles ranging over three orders of magnitude in size. Nanoparticles below the internanotube spacing (80 nm) of the forest can penetrate inside the forest and interact with the large surface area created by individual nanotubes. For larger particles (>80 nm), the ultrahigh porosity of the nanotube elements reduces the fluid boundary layer and enhances particle-structure interactions on the outer surface of the patterned nanoporous elements. Specific biomolecular recognition is demonstrated using cells (≈10 μm), bacteria (≈1 μm), and viral-sized particles (≈40 nm) using both effects. This technology can provide unprecedented control of bioseparation processes to access bioparticles of interest, opening new pathways for both research and point-of-care diagnostics.  相似文献   

4.
本文综述了溶胶-凝胶法的基本原理,以及国内溶胶-凝胶法制备纳米羟基磷灰石的研究进展,提出了有待解决的问题。  相似文献   

5.
顾昊  钱庆庆  戴荣继 《材料导报》2011,25(15):58-63
纳米介孔材料具有大的比表面积和孔体积、均一可调的孔道结构,已经被广泛应用在酶的固定吸附、生物催化、免疫亲和色谱、药物控释放和生物物理研究模型等方面。综述了溶胶-凝胶法制备的纳米介孔材料的最近研究进展,介绍了纳米介孔材料的种类和溶胶-凝胶制备方法,详细阐述了纳米介孔材料在固定生物活性蛋白方面的研究,并展望了纳米介孔材料在生物领域的应用。  相似文献   

6.
羟基磷灰石是人体骨骼的主要无机成分,具有良好的生物相容性和生物活性,能与新生骨形成很强的化学键合,是植入生物陶瓷材料研究的重点物质之一。微波烧结具有快速加热,能量利用率高,操作简便,过程易于控制等特点,被誉为“21世纪新一代烧结技术”。综述了微波烧结的基本原理,以及国内外微波法制备纳米羟基磷灰石的研究进展,提出了有待解决的问题。  相似文献   

7.
8.
9.
10.
    
In the field of micro‐nanofluidics, a freestanding configuration of a nanoporous junction is highly demanded to increase the design flexibility of the microscale device and the interfacial area between the nanoporous junction and microchannels, thereby improving the functionality and performance. This work first reports direct fabrication and incorporation of a freestanding nanoporous junction in a microfluidic device by performing an electrolyte‐assisted electrospinning process to fabricate a freestanding nanofiber membrane and subsequently impregnating the nanofiber membrane with a nanoporous precursor material followed by a solidification process. This process also enables to readily control the geometry of the nanoporous junction depending on its application. By these advantages, vertically stacked 3D micro‐nanofluidic devices with complex configurations are easily achieved. To demonstrate the broad applicability of this process in various research fields, a reverse electrodialysis‐based energy harvester and an ion concentration polarization‐based preconcentrator are produced. The freestanding Nafion‐polyvinylidene fluoride nanofiber membrane (F‐NPNM) energy harvester generates a high power (59.87 nW) owing to the enlarged interfacial area. Besides, 3D multiplexed and multi‐stacked F‐NPNM preconcentrators accumulate multiple preconcentrated plugs that can increase the operating sample volume and the degree of freedom of handling. Hence, the proposed process is expected to contribute to numerous research fields related to micro‐nanofluidics in the future.  相似文献   

11.
12.
Abstract

A colorimetric sensing strategy employing gold nanoparticles and a paper assay platform has been developed for tuberculosis diagnosis. Unmodified gold nanoparticles and single-stranded detection oligonucleotides are used to achieve rapid diagnosis without complicated and time-consuming thiolated or other surface-modified probe preparation processes. To eliminate the use of sophisticated equipment for data analysis, the color variance for multiple detection results was simultaneously collected and concentrated on cellulose paper with the data readout transmitted for cloud computing via a smartphone. The results show that the 2.6 nM tuberculosis mycobacterium target sequences extracted from patients can easily be detected, and the turnaround time after the human DNA is extracted from clinical samples was approximately 1 h.  相似文献   

13.
14.
15.
16.
    
Although 2D layered metal compounds are widely exploited using various techniques such as exfoliation and vapor-phase-assisted growth, it is still challenging to construct the 2D materials in a 3D configuration with preservation of the unique physicochemical properties of the metal compounds. Herein, a general synthetic strategy is reported for a wide variety of 2D (atomic-scale thickness) metal compounds with 3D bicontinous nanoporous structure. 19 binary compounds including sulfides, selenides, tellurides, carbides, and nitrides, and five alloyed compounds, are successfully prepared via a surface alloy strategy, which are readily created by using a recyclable nanoporous gold assisted chemical vapor deposition process. These 3D nanoporous metal compounds with preserved 2D physicochemical properties, tunable pore sizes, and compositions for electrocatalytic applications, show excellent catalytic performance in the electrochemical N2 reduction reaction. This work opens up a promising avenue for fundamental studies and potential applications of a wide variety of nanoporous metal compounds.  相似文献   

17.
We present a case of a 51-year-old woman who developed thrombocytopenia associated with dialysis treatments. Laboratory values revealed a platelet count of 50,000 or less postdialysis, with recovery of platelet count during her interdialytic period. An extensive work up including infectious serology and heparin-induced thrombocytopenia test was negative. Based on the pattern of thrombocytopenia and negative work-up, it is concluded that her thrombocytopenia was due to her dialysis treatments. We discuss the literature on thrombocytopenia and hemodialysis and postulate that our patient had a reaction to her dialyzer membrane or to the electron beam radiation method used to sterilize her dialyzer.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号