首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contamination of agricultural and food products by some fungi species that produce mycotoxins can result in unsafe food and feed. Mycotoxins have been demonstrated to have disease‐causing activities, including carcinogenicity, immune toxicity, teratogenicity, neurotoxicity, nephrotoxicity, and hepatotoxicity. Most of mycotoxins are heat stable and cannot be easily destroyed by conventional thermal food processing or domestic cooking methods. Postharvest approaches to prevent growth of mycotoxin‐producing fungi and detoxify mycotoxins from contaminated food are important topics in food safety research. Physical, chemical, and biological methods have been applied to prevent fungal growth or mycotoxin production, or to reduce mycotoxin content in the postharvest period and contribute toward mitigating against the effects of mycotoxins on human health. This literature review aims to evaluate postharvest approaches that have been applied to control both fungi growth and mycotoxin content in food and discuss their potential for upscaling to industrial scale.  相似文献   

2.
真菌毒素是一类长期困扰粮食安全的重要污染物,尤其是对于谷物类作物具有极大的危害性,因此,对于真菌毒素的检测与降解已经成为粮食安全方面的重点攻克对象。根据现有的研究,主要的降解手段有物理法、化学法以及生物法等,此外还涌现出了多种手段协同作用降解的方式,种类呈现多样化的趋势。因此,为了进一步推进更加便捷、高效的真菌毒素降解方法应用到相关的粮食领域中,减少降解剂对食品本身品质的影响,并帮助开发新的真菌毒素降解方法。作者综述了近年来研究者在防控粮食等产品中各种真菌毒素污染所采用的不同策略,并且分析了相应的产毒机制,讨论了现阶段所采用的各种方法防控真菌毒素的优势和不足,同时展望了未来食品工业对真菌毒素降解方法的发展新趋势,提出了新的研究方向。  相似文献   

3.
Mycotoxins are a potential health threat in cereals including wheat. In the European Union (EU), mycotoxin maximum levels are laid down for cereal raw materials and final food products. For wheat and wheat‐based products, the EU maximum levels apply to deoxynivalenol (DON), zearalenone, aflatoxins, and ochratoxin A. This review provides a comprehensive overview on the different mycotoxins and their legal limits and on how processing of wheat can affect such contaminants, from raw material to highly processed final products, based on relevant scientific studies published in the literature. The potential compliance with EU maximum levels is discussed. Of the four mycotoxins regulated in wheat‐based foods in the EU, most data are available for DON, whereas aflatoxins were rarely studied in the processing of wheat. Furthermore, available data on the effect of processing are outlined for mycotoxins not regulated by EU law—including modified and emerging mycotoxins—and which cover DON derivatives (DON‐3‐glucoside, mono‐acetyl‐DONs, norDONs, deepoxy‐DON), nivalenol, T‐2 and HT‐2 toxins, enniatins, beauvericin, moniliformin, and fumonisins. The processing steps addressed in this review cover primary processing (premilling and milling operations) and secondary processing procedures (such as fermentation and thermal treatments). A special focus is on the production of baked goods, and processing factors for DON in wheat bread production were estimated. For wheat milling products derived from the endosperm and for white bread, compliance with legal requirements seems to be mostly achievable when applying good practices. In the case of wholemeal products, bran‐enriched products, or high‐cereal low‐moisture bakery products, this appears to be challenging and improved technology and/or selection of high‐quality raw materials would be required.  相似文献   

4.
Post-harvest control strategies: minimizing mycotoxins in the food chain   总被引:4,自引:1,他引:4  
Contamination of cereal commodities by moulds and mycotoxins results in dry matter, quality, and nutritional losses and represents a significant hazard to the food chain. Most grain is harvested, dried and then stored on farm or in silos for medium/long term storage. Cereal quality is influenced by a range of interacting abiotic and biotic factors. In the so-called stored grain ecosystem, factors include grain and contaminant mould respiration, insect pests, rodents and the key environmental factors of temperature, water availability and intergranular gas composition, and preservatives which are added to conserve moist grain for animal feed. Thus knowledge of the key critical control points during harvesting, drying and storage stages in the cereal production chain are essential in developing effective prevention strategies post-harvest. Studies show that very small amounts of dry matter loss due to mould activity can be tolerated. With <0.5% dry matter loss visible moulding, mycotoxin contamination and downgrading of lots can occur. The key mycotoxigenic moulds in partially dried grain are Penicillium verrucosum (ochratoxin) in damp cool climates of Northern Europe, and Aspergillus flavus (aflatoxins), A. ochraceus (ochratoxin) and some Fusarium species (fumonisins, trichothecenes) on temperate and tropical cereals. Studies on the ecology of these species has resulted in modelling of germination, growth and mycotoxin minima and prediction of fungal contamination levels which may lead to mycotoxin contamination above the tolerable legislative limits (e.g. for ochratoxin). The effect of modified atmospheres and fumigation with sulphur dioxide and ammonia have been attempted to try and control mould spoilage in storage. Elevated CO2 of >75% are required to ensure that growth of mycotoxigenic moulds does not occur in partially dried grain. Sometimes, preservatives based on aliphatic acids have been used to prevent spoilage and mycotoxin contamination of stored commodities, especially feed. These are predominantly fungistats and attempts have been made to use alternatives such as essential oils and anti-oxidants to prevent growth and mycotoxin accumulation in partially dried grain. Interactions between spoilage and mycotoxigenic fungi and insect pests inevitably occurs in stored grain ecosystems and this can further influence contamination with mycotoxins. Effective post-harvest management of stored commodities requires clear monitoring criteria and effective implementation in relation to abiotic and biotic factors, hygiene and monitoring to ensure that mycotoxin contamination is minimised and that stored grain can proceed through the food chain for processing.  相似文献   

5.
真菌毒素是真菌生长过程中产生的次生代谢产物,其对农产品的污染直接威胁人类和动物的生命健康。真菌毒素的预防和脱除是实现食品和饲料工业高质量发展亟待解决的关键问题之一。目前研究者采用了多种策略来防控真菌毒素污染避免健康问题和经济损失,包括抑制真菌生长及真菌毒素生成、去除和降解污染农产品中的真菌毒素、降低真菌毒素生物活性等。利用天然植物成分(Natural plant compounds,NPC)防控真菌毒素污染表现出稳定性强、安全性好和抑制效率高等优势,业已成为研究新趋势。本文综述了近年来NPC防控农产品中真菌毒素污染的不同策略,讨论了相应的作用机制,分析了现阶段采用NPC防控真菌毒素的优势和不足,并展望了在食品工业的应用前景,为开发新的真菌毒素防控试剂提供科学参考。  相似文献   

6.
This review describes the major food and feed contaminating mycotoxins and provides a thorough insight about non-thermal food processing techniques and their mycotoxin detoxification mechanisms. Cold plasma, pulsed light, pulsed electric field, high pressure processing, and electron beam irradiation are among the techniques discussed. Mycotoxins decontamination is usually achieved through the release of reactive species and inactivation of toxin-producing microorganisms through alteration of cell membrane integrity and genetic makeup. Destruction of the molecular structure of mycotoxins responsible for toxicity also occurs during these processes. These non-thermal methods are effective in decontaminating mycotoxins with varying degrees of efficiency, and some of the methods do complete decontamination of mycotoxins with minimal processing. Despite their promising efficacy in decontaminating mycotoxins, the feasibility of most of these methods requires scale-up with future potential for commercialization and acceptance. Efforts should be made to increase the scalability and adoption of the technologies, especially in low-income countries where mycotoxin contamination is prevalent.  相似文献   

7.
Mycotoxins are considered to be heat‐stable molecules. Because of their toxic effects, information about their stability in thermal processes and potential inactivation procedures is needed. Numerous reports in the literature over a number of years have described the fate of mycotoxin during thermal food processing, including cooking, boiling, baking, frying, roasting and pasteurization. This review focuses on the effects of various thermal treatments on mycotoxins, while the fate of mycotoxins during extrusion processing, which is one of the most important technologies employed in the food industry, will also be reviewed. Copyright © 2009 Society of Chemical Industry  相似文献   

8.
9.
This study aimed to investigate mycotoxin contamination of cereal grain commodities for feed and food production in North Western Europe during the last two decades, including trends over time and co-occurrence between toxins, and to assess possible effects of climate on the presence of mycotoxins. For these aims, analytical results related to mycotoxin contamination of cereal grain commodities, collected in the course of national monitoring programmes in Finland, Sweden, Norway and the Netherlands during a 20-year period, were gathered. Historical observational weather data, including daily relative humidity, rainfall and temperature, were obtained from each of these four countries. In total 6382 records, referring to individual sample results for mycotoxin concentrations (one or more toxins) in cereal grains were available. Most records referred to wheat, barley, maize and oats. The most frequently analysed mycotoxins were deoxynivalenol, 3-acetyl-deoxynivalenol, nivalenol, T-2 toxin, HT-2 toxin and zearalenone. Deoxynivalenol had the highest overall incidence of 46%, and was mainly found in wheat, maize and oats. Mycotoxins that showed co-occurrence were: deoxynivalenol and 3-acetyl-deoxynivalenol in oats; deoxynivalenol and zearalenone in maize and wheat; and T-2 toxin and HT-2 toxin in oats. The presence of both deoxynivalenol and zearalenone in wheat increased with higher temperatures, relative humidity and rainfall during cultivation, but the presence of nivalenol was negatively associated with most of these climatic factors. The same holds for both nivalenol and deoxynivalenol in oats. This implies that climatic conditions that are conducive for one toxin may have a decreasing effect on the other. The presence of HT-2 toxin in oats showed a slight decreasing trends over time, but significant trends for other toxins showed an increasing presence during the last two decades. It is therefore useful to continue monitoring of mycotoxins. Obtained results can be used for development of predictive models for presence of mycotoxins in cereal grains.  相似文献   

10.
粮食真菌毒素污染的预防与脱毒   总被引:5,自引:0,他引:5  
粮食真菌毒素的预防包括预防粮食作物田间生长及收获后储藏过程中毒素的生物合成及代谢。真菌毒素的脱毒主要指除去、破坏及减少毒素作用的收获后处理。田间及储藏中没能有效控制真菌毒素的合成必将导致对人类健康的危害及经济损失,而有效的监控将避免真菌毒素成为威胁人类健康的污染源。应用综合预防措施将是控制真菌毒素的有效策略。本文强调的收获前后措施将依特别年份的特定的气候条件而定。弄清适于真菌污染、生长和产毒环境因素是有效控制食物及饲料中真菌毒素的关键措施。有很多新的有效的收获前预防策略正在开发,如利用转基因技术创造粮食作物抗性新品种及利用非产毒真菌菌株生物防治等。收获后的防止真菌毒素产生主要依赖于收获前后的良好的管理措施。脱毒策略可分为物理、化学或微生物脱毒技术,这些脱毒技术主要通过破坏、修饰或吸附真菌毒素,从而达到减少或消除毒素作用。  相似文献   

11.
Fungi are distributed worldwide and can be found in various foods and feedstuffs from almost every part of the world. Mycotoxins are secondary metabolites produced by some fungal species and may impose food safety risks to human health. Among all mycotoxins, aflatoxins (AFs), ochratoxin A (OTA), trichothecenes, deoxynivalenol (DON and T‐2 toxin), zearalenone (ZEN), and fumonisins (FMN) have received much attention due to high frequency and severe health effects in humans and animals. Malaysia has heavy rainfall throughout the year, high temperatures (28 to 31 °C), and high relative humidity (70% to 80% during wet seasons). Stored crops under such conditions can easily be contaminated by mycotoxin‐producing fungi. The most important mycotoxins in Malaysian foods are AFs, OTA, DON, ZEN, and FMN that can be found in peanuts, cereal grains, cocoa beans, and spices. AFs have been reported to occur in several cereal grains, feeds, nuts, and nut products consumed in Malaysia. Spices, oilseeds, milk, eggs, and herbal medicines have been reported to be contaminated with AFs (lower than the Malaysian acceptable level of 35 ng/g for total AFs). OTA, a possible human carcinogen, was reported in cereal grains, nuts, and spices in Malaysian market. ZEN was detected in Malaysian rice, oat, barley, maize meal, and wheat at different levels. DON contamination, although at low levels, was reported in rice, maize, barley, oat, wheat, and wheat‐based products in Malaysia. FMN was reported in feed and some cereal grains consumed in Malaysia. Since some food commodities are more susceptible than others to fungal growth and mycotoxin contamination, more stringent prevention and control methods are required.  相似文献   

12.
China is a major cereal‐producing country and almost one third of the annual cereal yield is maize. The maize plant and kernel are prone to infection by fungal attack and are most likely to be contaminated with mycotoxins under suitable temperature and humidity conditions, during both the growing and storage period. A number of investigations conducted in China have demonstrated that maize had been infected by fungi and contaminated with mycotoxins to varying degrees. Although most of the maize produced in China is used as feed and raw materials for the chemistry industry, a small amount of maize is consumed directly by humans and the hazards of mycotoxin to humans cannot be ignored. The state of mycotoxin contamination of maize in China is analyzed in this review. Due to unfavorable weather and poor storage conditions, the high incidences of mycotoxin contamination of maize are of great concern to the Chinese. It is imperative for the national and local governments to increase investments on building large‐scale modern warehouses and instructing farmers to grow, harvest, and store maize safely. Meanwhile, due to accumulative toxic effects of mycotoxins, quality control should be enforced to guarantee that animal products are safe for human consumption.  相似文献   

13.
The mycotoxins that generally occur in cereals and other products are not completely destroyed during food‐processing operations and can contaminate finished processed foods. The mycotoxins most usually associated with cereal grains are aflatoxins, ochratoxins, deoxynivalenol, zearalenone and fumonisins. The various food processes that may have effects on mycotoxins include cleaning, milling, brewing, cooking, baking, frying, roasting, flaking, alkaline cooking, nixtamalization, and extrusion. Most of the food processes have variable effects on mycotoxins, with those that utilize high temperatures having the greatest effects. In general, the processes reduce mycotoxin concentrations significantly, but do not eliminate them completely. This review focuses on the effects of various thermal treatments on mycotoxins. © 2014 Society of Chemical Industry  相似文献   

14.
The overarching challenges of mycotoxin contamination in food necessitate the development of strategies to be implemented to combat their effects thereof. Common processing techniques have been utilised but do not necessarily meet the desired efficacy. This review appraises studies on novel non-thermal food processing techniques, particularly high pressure processing, pulsed electric filed, cold plasma and ultrasound processing for the decontamination of mycotoxins in food. Although available studies on these techniques have suggested a reduction of mycotoxins and in some instances, complete decontamination of mycotoxins was also reported. The mechanisms by which reduction/elimination occurs include through decomposition of toxins after collision with ions/electrons leading to cleavage of bonds, structural degradation of the mycotoxins structure and cleavage of functional groups. Additional studies into the toxicity of degraded products and the composition of the food products are still required to ensure a more widespread adoption of these techniques to enhance food safety.  相似文献   

15.
Abstract

Economic losses due to post-harvest fungal spoilage and mycotoxin contamination of cereal crops is a frequently encountered issue. Typically, chemical preservatives are used to reduce the initial microbial load and the environmental conditions during storage are controlled to prevent microbial growth. However, in recent years the consumers’ desire for more naturally produced foods containing less chemical preservatives has grown increasingly stronger. This article reviews the latest advances in terms of novel approaches for chemical decontamination, namely application cold atmospheric pressure plasma and electrolyzed water, and their suitability for preservation of stored cereal crops. In addition, the alternative use of bio-preservatives, such as starter cultures or purified antimicrobial compounds, to prevent the growth of spoilage organisms or remove in-field accumulated mycotoxins is evaluated. All treatments assessed here show potential for inhibition of microbial spoilage. However, each method encounters draw-backs, making industrial application difficult. Even under optimized processing conditions, it is unlikely that one single treatment can reduce the natural microbial load sufficiently. It is evident that future research needs to examine the combined application of several treatments to exploit their synergistic properties. This would enable sufficient reduction in the microbial load and ensure microbiological safety of cereal crops during long-term storage.  相似文献   

16.
Stability of mycotoxins during food processing   总被引:5,自引:0,他引:5  
The mycotoxins that commonly occur in cereal grains and other products are not completely destroyed during food processing operations and can contaminate finished processed foods. The mycotoxins most commonly associated with cereal grains are aflatoxins, ochratoxin A, fumonisins, deoxynivalenol and zearalenone. The various food processes that may have effects on mycotoxins include sorting, trimming, cleaning, milling, brewing, cooking, baking, frying, roasting, canning, flaking, alkaline cooking, nixtamalization, and extrusion. Most of the food processes have variable effects on mycotoxins, with those that utilize the highest temperatures having greatest effects. In general the processes reduce mycotoxin concentrations significantly, but do not eliminate them completely. However, roasting and extrusion processing show promise for lowering mycotoxin concentrations, though very high temperatures are needed to bring about much of a reduction in mycotoxin concentrations. Extrusion processing at temperatures greater than 150 degrees C are needed to give good reduction of zearalenone, moderate reduction of alfatoxins, variable to low reduction of deoxynivalenol and good reduction of fumonisins. The greatest reductions of fumonisins occur at extrusion temperatures of 160 degrees C or higher and in the presence of glucose. Extrusion of fumonisin contaminated corn grits with 10% added glucose resulted in 75-85% reduction in Fumonisin B(1) levels. Some fumonisin degredation products are formed during extrusion, including small amounts of hydrolyzed Fumonisin B(1) and N-(Carboxymethyl) - Fumonisin B(1) and somewhat higher amounts of N-(1-deoxy-d-fructos-1-yl) Fumonisin B(1) in extruded grits containing added glucose. Feeding trial toxicity tests in rats with extruded fumonisin contaminated corn grits show some reduction in toxicity of grits extruded with glucose.  相似文献   

17.
食品中真菌毒素污染成为近年来食品安全检测领域的热点和难点。免疫分析技术具有检测快速、操作简便、价格低廉且环境友好等优点,适合应用于食品安全检测领域。本文对基于新型标记材料的免疫分析技术,包括酶联免疫吸附法、免疫层析技术、电化学免疫传感技术、免疫芯片技术、基于免疫分析的流式微球技术和时间分辨荧光免疫分析技术,应用于粮食产品中真菌毒素快速检测的研究现状进行综述,系统分析了各种免疫分析技术的优缺点,为免疫分析技术在真菌毒素检测的应用及发展提供参考,同时也为保障粮食产品的安全提供了新思路。  相似文献   

18.
Mycotoxins are secondary metabolites produced by moulds in food that are considered a substantial issue in the context of food safety, due to their acute and chronic toxic effects on animals and humans. Therefore, new accurate methods for their identification and quantification are constantly developed in order to increase the performance of extraction, improve the accuracy of identification and reduce the limit of detection. At the same time, several industrial practices have shown the ability to reduce the level of mycotoxin contamination in food. In particular, a decrease in the amount of mycotoxins could result from standard processes naturally used for food processing or by procedures strategically introduced during processing, with the specific aim of reducing the amount of mycotoxins. In this review, the current methods adopted for accurate analyses of mycotoxins in cereals (aflatoxins, ochratoxins, trichothecenes, fumonisins) are discussed. In addition, both conventional and innovative strategies adopted to obtain safer finished products from common cereals intended for human consumption will be explored and analysed. © 2018 Society of Chemical Industry  相似文献   

19.
Mycotoxins are toxic secondary metabolites of fungal origin and contaminate agricultural commodities before or under post-harvest conditions. They are mainly produced by fungi in the Aspergillus, Penicillium and Fusarium genera. When ingested, inhaled or absorbed through the skin, mycotoxins will cause lowered performance, sickness or death on humans and animals. Factors that contribute to mycotoxin contamination of food and feed in Africa include environmental, socio-economic and food production. Environmental conditions especially high humidity and temperatures favour fungal proliferation resulting in contamination of food and feed. The socio-economic status of majority of inhabitants of sub-Saharan Africa predisposes them to consumption of mycotoxin contaminated products either directly or at various points in the food chain. The resulting implications include immuno-suppression, impaired growth, various cancers and death depending on the type, period and amount of exposure. A synergistic effect between mycotoxin exposure and some important diseases in the continent such as malaria, kwashiorkor and HIV/AIDS have been suggested. Mycotoxin concerns have grown during the last few decades because of their implications to human and animal health, productivity, economics of their management and trade. This has led to development of maximum tolerated limits for mycotoxins in various countries. Even with the standards in place, the greatest recorded fatal mycotoxin-poisoning outbreak caused by contamination of maize with aflatoxins occurred in Africa in 2004. Pre-harvest practices; time of harvesting; handling of produce during harvesting; moisture levels at harvesting, transportation, marketing and processing; insect damage all contribute to mycotoxin contamination. Possible intervention strategies include good agricultural practices such as early harvesting, proper drying, sanitation, proper storage and insect management among others. Other possible interventions include biological control, chemical control, decontamination, breeding for resistance as well as surveillance and awareness creation. There is need for efficient, cost-effective sampling and analytical methods that can be used for detection analysis of mycotoxins in developing countries.  相似文献   

20.
Ruminants are considered to be less sensitive towards mycotoxins than monogastric animals because rumen microbiota have mycotoxin‐detoxifying capacities. Therefore the effect of mycotoxins towards ruminants has been studied to a lesser extent compared with monogastric animals. Worldwide, a high proportion of the ruminant diet consists of silages made of forage crops (i.e. all parts of the crop above the stubble are harvested). In practice, silages are often contaminated with multiple mycotoxins. Exposure to a cocktail of mycotoxins can hamper animal production and have severe health consequences. In this article the different aspects associated with mycotoxin contamination of silage are reviewed ‘from seed to feed’. An overview is given on the occurrence of toxigenic fungal species and their concomitant mycotoxins in forage crops before and after ensiling. The mycotoxin load of visually non‐mouldy samples and mouldy hot spots within the same silo is also compared. Subsequently, this review delves into different problem‐solving strategies. A logical first step is prevention of mould growth and mycotoxin production in the field, during harvest and during ensiling. If prevention should fail, several remediation strategies are available. These are listed, mainly focusing on the possibilities of microbial degradation of mycotoxins in vivo in silage. © 2015 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号