首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Invertebrates were compared upstream versus downstream from diversions on three small, headwater streams in the central Rocky Mountains, USA. Flow alteration of these streams varied from mild (some aspect of all natural flow components was transferred downstream) to severe (nearly 100% of the flow was diverted for 10–11 months of the year). The analysis was separated into periods of frequent (diversion gates often opened and closed; April–October) and infrequent flow fluctuations (stable low flows due to constant diversion; November–March). Invertebrates appeared resilient to mild flow alterations as neither the abundance, diversity, nor spatial and temporal variation in abundance and diversity differed upstream versus downstream during either period. In severely diverted streams, however, total invertebrate density downstream from the diversion was only 50% of upstream. Invertebrate diversity was also reduced; ten taxa abundant upstream were absent in downstream sections. Chironomids, ostracods and Ameletus spp. comprised 80% of total invertebrate density during constant, low flow conditions in the severely diverted streams. Although all taxa in the severely diverted streams recovered (drift) during the period of frequent flow fluctuations, spatial and temporal variation (coefficient of variation) in both density and the number of taxa was significantly greater downstream. Depending on the frequency with which free‐flowing conditions were re‐established, many invertebrate populations (especially mayflies and some stoneflies) declined or were even locally extirpated (e.g. Hesperoperla pacifica, Megarcys signata, Neothremma alicia, Polycelis coronata). Downstream communities in severely diverted tributaries appeared to fluctuate between two stable endpoints; a depauperate low‐flow community dominated by chironomids and ostracods and a more abundant and diverse natural‐flow community dominated by mayflies, chironomids, ostracods, stoneflies and caddisflies. Water abstraction (extent and timing of diversion) could be managed to minimize risks to downstream ecological resources.  相似文献   

2.
结合北京市已建的长距离重力输水工程,介绍了调节阀的设计选用情况,论述了设置消能调流设施可有效防护水锤保障输水管路安全,并对管道工作压力进行合理分段,分析了常规措施与采用调节阀消能调流的优缺点,阐述了调节阀的应用现状和选用技术要求。采用特征线法进行数学模拟计算,通过计算分析结果表明,调节阀可方便地调减流量,消减富余水头防护水锤并节约投资。  相似文献   

3.
塔里木灌区引水前后环境流特性变化   总被引:1,自引:0,他引:1  
基于水文改变指标基本分析方法,筛选建立了环境流评价指标,着重分析了塔里木灌区引水对塔里木河干流阿拉尔和新渠满断面环境流变化的影响。结果表明:在灌区大量引水灌溉前后,干流两个主要水文站的环境流组成分别呈现出不同程度的变化,环境流组成趋于单一化;各水文站的流量事件以枯水流量事件为主;引水对特枯流量事件、高流量脉冲事件和大洪水事件的影响较大。结合环境流指标和生态系统响应关系,制定了面向生态的水资源优化调度方案,为流域生态治理和水量分配提供了参考。  相似文献   

4.
River regulation can cause various downstream changes to the physical environment of stream channels. Here, we examined whether disturbance of the stream bed and/or degree of emergence of large substrata affect the diversity and abundances of bryophytes and macroalgae in three regulated and three unregulated upland streams. We marked and mapped randomly selected rocks in situ for each stream and measured the rates at which these substrata disappeared. We recorded percentage covers of bryophytes and macroalgae in each stream on rocks of differing sizes (‘small’ <10 cm, ‘medium’ = 10–20 cm, ‘large’ >20 cm maximum top dimension) and lying either loosely on top of the bed or packed into it; we also recorded when rocks were emergent. We found strong positive associations between plant cover (mostly bryophytes) and substrate size, consistent with the hypothesis that substratum stability primarily drives bryophyte abundance. Nevertheless, highest covers of bryophytes in unregulated streams were found on emergent rocks, which tended to be large, meaning that disturbance and emergence effects were difficult to discriminate. Regulated streams did not have lower disturbance frequencies than unregulated systems. Percentage covers of plants, primarily bryophytes, were lower in regulated systems because of reduced cover on large substrata, but not small or medium ones. Together, these two pieces of evidence suggest that effects of river regulation on bryophytes were not caused by altered disturbance frequencies. A more likely explanation is that regulated streams have little of the daily or weekly rises and falls in discharge that occur in unregulated streams because of small rainfall events. Consequently, large rocks in regulated streams have only narrow zones that are subject to a variety of wetted conditions, which may be more suitable for bryophyte growth and colonization than constant submergence. Distinguishing between disturbance and emergence effects is important for setting environmental flows: alleviating the former requires more flushing flows whilst the latter requires greater temporal variability in non‐flood flows. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
调水渠网非恒定流的线性变换求解方法   总被引:12,自引:4,他引:8  
本文针对调水渠网非恒定流隐式差分,提出了线性变换求解方法。首先通过未知列向量的线性变换求解每条渠道的带型矩阵线性方程组,以确定进出口计算断面水深、流量微增量的函数关系,然后与边界条件联立求解得到它们的解,最后通过一个回代过程计算出渠网各计算断面的水深和流量的微增量。应用这一方法,研究了东深供水工程渠网的非恒定流。本文方法适用于各种渠网,包括简单的一条渠道,串联渠道,树枝状渠网和具有并联和回路的渠网和河网。  相似文献   

6.
The instream flow (IF) that is a required minimum flow amount for aquatic species and inhabitants has been one of key factors for dealing with the water allocation complexities since 1960s. In particular, the requirement of IF in river flow constraints the reservoir operation that focuses on water supply of municipal and irrigation use. This study focuses on evaluating the impact of IF on municipal and irrigation use from which the Waco reservoir is supplied. The exceedance frequencies of stream flow are performed based on three conditions: pre‐ or post‐dam construction condition and reservoir storage reallocation condition. The monthly IF percentage expressed as a percentage of naturalized flow is computed using naturalized flow and IF available in Texas Water Availability Model (WAM) and applied to generate the monthly IF for 1939–1997 hydrologic‐simulation periods. The effects of IF use are assessed on period and volume reliabilities for municipal and irrigation use. Sensitivity analysis was performed to provide the optimal amount and range of IF using two different kinds of constant and seasonal IF use percentage rate plans. These results in this study indicate that the presence of IF has not changed the exceedance frequencies of low flow but reduced exceedance frequencies of flood flows. Period and volume reliabilities for municipal and irrigation use have decreased by 2 or 4%. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
In arid regions, large-scale water diversion from rivers leads to significant changes in river flow regimes, which may have large impacts on ecological water uses of river-dependent ecosystems, such as river, lake, wetland, and riparian ecosystems. To assess the integrated impact of water diversion on ecological water uses, we proposed a hierarchy evaluation model composed of four layers representing the evaluation goal, sub-areas of the influenced region, evaluation criteria, and water diversion schemes, respectively. The evaluation criteria for different types of ecological water uses were proposed, and the analytical hierarchy process was used for the integrated assessment. For a river ecosystem, the percentage of mean annual flow was used to define the grade of environmental flow. For a lake ecosystem, water recharge to the lake to compensate the lake water losses was used to assess the ecological water use of a lake. The flooding level of the wetland and the groundwater level in the riparian plain were used to assess the wetland and riparian ecological water uses, respectively. The proposed model was applied to a basin in northern Xinjiang in northwest China, where both water diversion and inter-basin water transfer projects were planned to be carried out. Based on assessment results for the whole study area and two sub-areas, an appropriate scheme was recommended from four planning schemes. With the recommended scheme, ecological water uses of the influenced ecosystems can be maintained at an acceptable level. Meanwhile, economical water requirements can be met to a great extent.  相似文献   

8.
The reinstatement of natural flow regimes is a rapidly emerging issue in river restoration worldwide. In northern Victoria, Australia, efforts are presently underway to restore a natural, intermittent flow regime to several streams which have received perennial diversions for both irrigation and stock and domestic water‐supplies for over 100 years. A pipeline to deliver water to landholders will significantly reduce transmission losses throughout the system allowing irrigation canals and diversion weirs to be decommissioned. The motivation for flow alteration in this system lies primarily in reducing inefficiencies in water delivery which, in turn, will be used to meet escalating demands on water resources. The ecological impact of the flow regime shift on these streams is likely to be substantial. This study utilized an existing artificial hydrological gradient (from perennial to intermittent) in two creek systems, to explore relationships between flow regime and a range of ecological variables. These data provide a benchmark against which to assess ecological changes once flow has been altered and form the basis for predicting changes that can assist future management decisions. Data collected from 10 sites across a strong hydrological gradient detected clear differences in geomorphology, water quality and biotic assemblages (macrophytes, macroinvertebrates and fish). By examining the relationship between flow regime and the distribution of biota we identify both the positive and negative outcomes of restoring naturally intermittent flow regimes within artificially perennial lowland streams. The reinstatement of intermittent flow regimes in artificially perennial streams will continue in many parts of the world as water delivery via these systems becomes increasingly uneconomical. While flow restoration may in principle be regarded as a positive step, these findings emphasize the need to consider fully the ecological consequences of restoring historical hydrological regimes to streams within the context of other human induced catchment disturbances. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
针对喀麦隆曼维莱水电站无压引水系统明渠的过流能力及其水力瞬变流特性,基于明渠水流的基本方程,推导得到了相应的特征隐式格式算法以及边界条件,建立了长明渠引水式水电站瞬变流分析的仿真模型,并进一步结合工程实例揭示系统的瞬变流特性。与二维水力仿真分析成果进行比较验证分析,可知该水电站水库和压力前池水位差为1.06 m的情况下,引水明渠过流能力不足以通过4×112.5 m~3/s的额定流量。融合明渠的水力特性和压力前池的水位波动特性,水电站水力—机械系统调节保证计算参数的控制值均满足要求,其中明渠出口(压力前池)最高水位为392.362 m,低于相应的渠道末端顶高程394.270 m,满足布置要求。水电站水力—机械系统的水力干扰和小波动过渡过程均满足稳定性要求,且调节品质优良。研究成果可为工程设计和电站运行提供可靠的技术支撑,在合理选择前池容积的前提下,实现对渠道引水能力、渠堤沿线高度和前池最大水位波动的有效控制。  相似文献   

10.
Few comprehensive studies on stream assessment and biomonitoring have been conducted in tropical, freshwater watersheds. Currently under threat from climate change, urbanization and increasing freshwater demands, there is a need for innovative approaches to tropical watershed assessment and management. This study investigated cascade habitat macroinvertebrate communities among four tropical mountain streams with the goal of enhancing future efforts to identify flow biocriteria for watersheds of Polynesia. Cascade macroinvertebrate communities were compared between streams of differing size and magnitude of flow removal to evaluate the biological effects of water withdrawal on benthic communities. Two cascade microhabitats, identified as torrenticolous and amphibious, were evaluated for macroinvertebrate community differences and presence of native taxa among watersheds. Cascade habitat in general was reduced, by as much as 98%, in downstream reaches, having a significant impact on the stream ecosystem physical template important for native stream communities. In addition, two‐way ANOVA results revealed no main effects, but significant interactions of watershed size and flow removal on mean macroinvertebrate density for torrenticolous microhabitats; however, the opposite was true for the amphibious microhabitat. Diversity was significantly higher under undiverted flow conditions (t = 4.21, df = 272, p = 0.0004) and in torrenticolous microhabitats (t = 3.86, df = 272, p < 0.0001) over the entire study period. The amphibious microhabitat was composed of 39% native taxa, while the torrenticolous microhabitat contained <7%. This study provides new options for biomonitoring of native populations in Polynesian watersheds. Further studies that support the development of in‐stream flow criteria to preserve cascades are important to understanding the role of this habitat in tropical stream ecosystem function. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
以中山市为例,采取引水调控措施改善该市河涌水环境,结合河网地区水利设施,建立水量水质联合调控模型,通过二级联解方法,模拟引水调控实施效果。结果表明:在枯水期实施引水调控36h、汛期实施引水调控12h后,该市河涌水质能达到水功能区的水质目标。引水调控措施增加河涌水动力、提高水环境容量,可有效改善河涌水环境。  相似文献   

12.
South African water resources legislation requires that environmental flow requirements are included as part of water resource management. An operational management method is presented that relies upon simulating natural flow conditions based on inputs of near real‐time observations of rainfall and a set of operating rules. The operating rules define the reservoir releases and water use supply curtailments that ensure downstream environmental flow objectives will be met. The focus is on managing the variability of continuous low flows, while a suitable method for managing event‐based high flow releases remains elusive. The main limitation to the successful implementation of the low flow approach is the lack of legislated control over run‐of‐river water abstractions. While this limitation is expected to be overcome, as the provisions of new legislation are implemented, water managers may still lack the capacity to exercise the necessary controls over abstraction. There is no reason why the method could not be applied outside South Africa, given compatibility in the definition of environmental flow requirements. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Spatio‐temporal variability in river flow is a fundamental control on instream habitat structure and riverine ecosystem biodiversity and integrity. However, long‐term riverine ecological time‐series to test hypotheses about hydrology–ecology interactions in a broader temporal context are rare, and studies spanning multiple rivers are often limited in their temporal coverage to less than five years. To address this research gap, a unique spatio‐temporal hydroecological analysis was conducted of long‐term instream ecological responses (1990–2000) to river flow regime variability at 83 sites across England and Wales. The results demonstrate clear hydroecological associations at the national scale (all data). In addition, significant differences in ecological response are recorded between three ‘regions’ identified (RM1–3*) associated with characteristics of the flow regime. The effect of two major supra‐seasonal droughts (1990–1992 and 1996–1997) on inter‐annual (IA) variability of the LIFE scores is evident with both events showing a gradual decline before and recovery of LIFE scores after the low flow period. The instream community response to high magnitude flow regimes (1994 and 1995) is also apparent, although these associations are less striking. The results demonstrate classification of rivers into flow regime regions offers a way to help unravel complex hydroecological associations. The approach adopted herein could easily be adapted for other geographical locations, where datasets are available. Such work is imperative to understand flow regime–ecology interactions in a longer term, wider spatial context and so assess future hydroecological responses to climate change and anthropogenic modification of riverine ecosystems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
自然河道中沉水植物苦草对水流的生理响应   总被引:1,自引:0,他引:1  
通过野外现场研究苦草生长和生理对水流的响应规律。结果表明:30~40 cm/s的水流速度对苦草的生长形态有影响;与静水区相比,动水区中苦草植株矮小、叶片较窄。在植物生长旺季和生殖生长期间,动水对植物细胞内的蛋白质和可溶性糖含量有促进作用,同时也诱导过氧化氢(H2O2)等活性氧上升,使得超氧化物歧化酶(SOD)、过氧化氢酶(CAT)等抗氧化酶活性相应提高以降低活性氧伤害;30~40 cm/s的流速对苦草生长有一定的影响,但不影响苦草在河道生态修复中的应用。  相似文献   

15.
Water regulation may alter hydraulic head gradients with consequences for the exchange of water between the river and the hyporheic zone. The objective of this study was to investigate the effect of discharge on hyporheic water quality in a regulated Swedish boreal river during a 10‐day experimental period with a sequence of alternating high‐ and low‐flow episodes. A 250 m reach was instrumented with 28 piezometers placed at 150 and 300 mm below the river bed or below the mean groundwater level in the floodplain, and these piezometers were used to measure temperature, oxygen, electric conductivity and pH. High daily variation in air temperature during the first 3 days was transmitted vertically through the stream water into the hyporheic zone within hours. An oxygen saturation of 100% in the river water corresponded to 60–70% saturation at 150 mm depth and 30% at 300 mm depth. The hyporheic oxygen concentration at 150 mm depth decreased during the experimental period, falling into a range that is potentially harmful to incubating salmonid eggs. This was interpreted as a long‐term response to the overall regulation regime, rather than a response to short‐term water regulation during the experiment. Even though the effect of short‐term regulation on the quality of hyporheic water in the river bed was limited, there was a more pronounced effect on the quality of floodplain hyporheic water. Most of the driving forces for temporal variation of water quality in the river bed came vertically from the river water, rather than from the lateral exchange. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
The Sanaga River is one of Sub‐Saharan Africa's largest and greatly regulated rivers. Available flow data for this hydrosystem largely cover the pre‐ and post‐regulation periods. From comparisons between unregulated (hypothetical) and observed scenarios, it has been possible to separate and to quantify hydro‐climatic (groundwater + rainfall) change effects from anthropogenic impacts (especially dam‐related alterations). To appreciate shifts in the river regime, discontinuity detection tests and the IHA model were applied to discharge data series reflecting average and extreme flow conditions, respectively. Results obtained principally from the Hubert segmentation method reveal that a major discontinuity occurred in 1970–1971 separating a surplus phase between 1945–1946 and 1969–1970, and a deficient and much contrasted one, from 1971/1972. This implies that the Sanaga catchment is dominantly affected by hydro‐climatic changes. However, wide land cover/land use changes experienced here since 1988 have resulted in an increase in surface runoff. Additional quickflows linked to these changes may have partly compensated for the substantial decline in the dry season rainfall and groundwater inputs observed from this date. Although at the monthly scale, dam‐related impacts on average flows increase with stage of regulation, the seasonal variability of the river regime remains generally unaffected. A comparison of the IHA statistics, calculated from unregulated and observed streamflow data, show that hydrologic shifts occurring in maximum and minimum discharges are mostly significant from 1971/1972 and are mainly due to the action of dams. Minimum flows appear, however, widely impacted, thus reflecting the prime objective assigned to the existing reservoirs, constructed to supplement flows for hydroelectricity production during the dry season. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Controlled water releases from reservoirs (i.e. artificial floods) are used as a management technique to remove fine sediments and detrital materials from spawning gravels, mobilize gravel bars and clear encroaching brush from stream banks. The effects of a managed release event on water quality were investigated on the lower Mokelumne River in the western Sierra Nevada, California. The managed release was characterized by an increase in flow over a 4‐day period (from 11 to 57 m3 s−1). Automatic pump samplers were used to collect samples for water quality from 0.7, 16.4, 37.4 and 54.4 km below Camanche Dam. These sampling sites provided water quality data for three distinct stream reaches: a gravel and sand‐textured substrate reach (0.7–16.4 km), a reach characterized by lentic conditions associated with a small reservoir (16.4–37.4 km), and fine sand and silt‐textured substrate reach (37.4–54.4 km). Water samples were analysed for total suspended solids (TSS), total nitrogen, ammonium (NH4‐N), nitrate (NO3‐N), total phosphorus, soluble reactive phosphorus (SRP), dissolved organic carbon (DOC), foecal coliforms and E. coli. Chemographs for all constituents exhibited spikes in concentration with each increase in streamflow for the rising limb. Fluxes of TSS, total P and total N released from the 0.7 to 16.4 km reach were 322, 0.32 and 0.70 Mg, respectively. The small reservoir acted as a sink for particulate materials retaining about 50% of TSS, 48% of total P and 43% of total N. However, the reservoir acted as a source of dissolved nutrients (NO3‐N = 0.28 Mg and SRP = 0.055 Mg). The stream reach below the reservoir (37.4 to 54.4 km) was a source of particulate materials, dissolved nutrients and bacteria, possibly due to agricultural and urban inputs. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
邹志超  王福军  王玲 《水利学报》2018,49(6):678-686
蝶阀广泛应用于有压输水系统,其开启过程是输水系统启动运行的必经阶段。在开启过程中,阀板需按预定的规律在流场中做旋转运动,具有变压差变截面的特点。本文针对泵站加压输水系统,采用一维/三维耦合计算思路,对蝶阀上下游的管路段按准恒定假设基于伯努利方程、对蝶阀所在的三维流体域基于动网格策略,构建了蝶阀开启过程数值分析方法,提出了模拟计算的动态边界条件及数据更新方式,对蝶阀开启过程非定常特性进行了三维数值模拟。研究结果表明,当阀板转角由0°匀速增大至90°,管道流量在阀板转角0~45°范围内快速增长,在45°时达到额定流量的90%,之后流量增长速度变缓。阀板水力转矩呈先快增后慢减的变化趋势,最大水力转矩出现在阀板转角20°时。从蝶阀前后流场可以看出,在阀板下游具有从两个主涡到流线平顺的演化特征。该研究揭示了蝶阀开启过程中水力瞬变演化机理,为优化蝶阀设计和输水系统稳定运行提供了参考。  相似文献   

19.
This study compared the sensitivity of water quality in tropical Aguamilpa Reservoir, as represented by normalized algae mass and dissolved oxygen, to selected projected changes from global climate change and development. The sensitivity of reservoir stratification as an indicator of reservoir sensitivity also was analysed. Model simulations indicated the reservoir was more sensitive to changes during the warm‐dry season than at other times. Both indexes (normalized algal mass and dissolved oxygen mass) were more sensitive to changes in air temperature (climate change) and nitrogen loading (development) than to changes in flow. The sensitivity to air temperature was similar to, but generally less than, the sensitivity to nutrient inflow. At the bounding values for change (3 °C for temperature; 50% increase in nitrogen loading), the algae mass sensitivities were 0.15 mg L?1 per 3 °C and 0.2 mg L?1 per 50% nitrogen load increase, and the dissolved oxygen mass sensitivities were 0.7 mg L?1 per 3 °C and 2.0 mg L?1 per 50% load increase. Changes in air temperature and nitrogen loadings affect the reservoir in different ways, air temperature mostly changing the timing of the algal growth with little change in peak values, while nutrient loadings change the peak values with little change in the timing. While the sensitivities are similar, the total algal mass change is significantly larger for nitrogen loading, compared to air temperature changes. These results imply global climate change effects can be partially mitigated by implementing management measures in the surrounding watersheds to minimize nutrient inflows, especially nitrogen in the case of Aguamilpa Reservoir.  相似文献   

20.
黄河流域水资源均衡调控理论与模型研究   总被引:2,自引:0,他引:2  
变化环境下缺水流域正面临日益严峻的水资源供需矛盾,用水效率与公平协调难度极大。本文在梳理总结已有水资源调控理论的基础上,建立了适用于黄河等缺水流域的水资源均衡调控理论与方法。基于社会福利学原理构建了统筹用水效率与公平的水资源均衡调控函数,通过水资源均衡调控函数引导水资源配置。综合水资源经济价值、社会价值和生态价值,建立了用水效率表征指标;统筹地区公平和行业协调,建立了用水公平表征指标。以黄河流域为例,建立了黄河流域水资源均衡调控模型,进行黄河流域水资源均衡方案分析。实例研究结果证明,该模型通过兼顾用水效率与用水公平目标,为黄河"87"分水方案优化提供技术支撑,也可为其他缺水流域或区域的水资源均衡调控提供技术方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号