首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Molecular catalysts have been receiving increasingly attention in the electrochemical CO2 reduction reaction (CO2RR) with attractive features such as precise catalytic sites and tunable ligands. However, the insufficient activity and low selectivity of deep reduction products restrain the utilization of molecular catalysts in CO2RR. Herein, a donor–acceptor modified Cu porphyrin (CuTAPP) is developed, in which amino groups are linked to donate electrons toward the central CuN4 site to enhance the CO2RR activity. The CuTAPP catalyst exhibited an excellent CO2-to-CH4 electroreduction performance, including a high CH4 partial current density of 290.5 mA cm−2 and a corresponding Faradaic efficiency of 54.8% at –1.63 V versus reversible hydrogen electrode in flow cells. Density functional theory calculations indicated that CuTAPP presented a much lower energy gap in the pathway of producing *CHO than Cu porphyrin without amino group modification. This work suggests a useful strategy of introducing designed donor–acceptor structures into molecular catalysts for enhancing electrochemical CO2 conversion toward deep reduction products.  相似文献   

2.
The electrocatalytic reduction of CO2 provides a sustainable way to mitigate CO2 emissions, as well as store intermittent electrical energy into chemicals. However, its slow kinetics and the lack of ability to control the products of the reaction inhibit its industrial applications. In addition, the immature mechanistic understanding of the reduction process makes it difficult to develop a selective, scalable, and stable electrocatalyst. Carbon‐based materials are widely considered as a stable and abundant alternative to metals for catalyzing some of the key electrochemical reactions, including the CO2 reduction reaction. In this context, recent research advances in the development of heterogeneous nanostructured carbon‐based catalysts for electrochemical reduction of CO2 are summarized. The leading factors for consideration in carbon‐based catalyst research are discussed by analyzing the main challenges faced by electrochemical reduction of CO2. Then the emerging metal‐free doped carbon and aromatic N‐heterocycle catalysts for electrochemical reduction of CO2 with an emphasis on the formation of multicarbon hydrocarbons and oxygenates are discussed. Following that, the recent progress in metal–nitrogen–carbon structures as an extension of carbon‐based catalysts is scrutinized. Finally, an outlook for the future development of catalysts as well as the whole electrochemical system for CO2 reduction is provided.  相似文献   

3.
4.
A series of novel CoFe‐based catalysts are successfully fabricated by hydrogen reduction of CoFeAl layered‐double‐hydroxide (LDH) nanosheets at 300–700 °C. The chemical composition and morphology of the reaction products (denoted herein as CoFe‐x) are highly dependent on the reduction temperature (x). CO2 hydrogenation experiments are conducted on the CoFe‐x catalysts under UV–vis excitation. With increasing LDH‐nanosheet reduction temperature, the CoFe‐x catalysts show a progressive selectivity shift from CO to CH4, and eventually to high‐value hydrocarbons (C2+). CoFe‐650 shows remarkable selectivity toward hydrocarbons (60% CH4, 35% C2+). X‐ray absorption fine structure, high‐resolution transmission electron microscopy, Mössbauer spectroscopy, and density functional theory calculations demonstrate that alumina‐supported CoFe‐alloy nanoparticles are responsible for the high selectivity of CoFe‐650 for C2+ hydrocarbons, also allowing exploitation of photothermal effects. This study demonstrates a vibrant new catalyst platform for harnessing clean, abundant solar‐energy to produce valuable chemicals and fuels from CO2.  相似文献   

5.
The mixing of charge states of metal copper catalysts may lead to a much improved reactivity and selectivity toward multicarbon products for CO2 reduction. Here, an electrocatalyst model composed of copper clusters supported on graphitic carbon nitride (g‐C3N4) is proposed; the connecting Cu atoms with g‐C3N4 can be oxidized to Cux + due to substantial charge transfer from Cu to N atoms, while others stay as Cu0. It is revealed that CO2 can be captured and reduced into *CO on the Cut0 site, owing to its zero oxidation state. More importantly, C–C coupling reaction of two *CHO species on the Cut0–Cubx + atomic interface can occur with a rather low kinetic barrier of 0.57 eV, leading to the formation of the final C2 product, namely, C2H5OH. During the whole process, the limiting potential is just 0.68 V. These findings may open a new avenue for CO2 reduction into high‐value fuels and chemicals.  相似文献   

6.
In this study, the catalytic activities of the steam methane reforming (SMR) reactions with two catalysts, including nickel–scandia-stabilized zirconia (Ni–SSZ) and copper/nickel–scandia-stabilized zirconia (Cu/Ni–SSZ), were examined and compared. The microstructure and crystallinity of the as-prepared catalysts were characterized by scanning electron microscopy, Raman spectroscopy, and X-ray diffraction. Mass spectrometer was applied in the outlet streams, in order to simultaneously monitor the time-dependent kinetics in the reactor for an activity test and conversion examination. Finally, thermogravimetric analysis (TGA) and Raman spectrometer were implemented for further verification of carbon residuals on the catalysts. It was found that the incorporation of Cu on Ni–SSZ imposed significant constraints on the growth of nickel crystallites from NiO during the annealing process in reducing atmospheres. The methane conversion of Ni–SSZ and Cu/Ni–SSZ catalysts (annealed at 300 °C for 2 h) was 36.2 and 26.0%, respectively. However, the amount of carbon residuals on Cu/Ni–SSZ catalyst (300 °C for 2 h) was 18.6%, which is lower than that of the Ni–SSZ catalysts (33.2%) from TGA results. Further Raman experiments revealed that more graphite-like carbon residuals and less defects or amorphous carbons (IG/ID?=?2.0) were found in the case of Cu/Ni–SSZ catalysts (300 °C for 2 h). Among the catalysts in this study, the Cu/Ni–SSZ catalyst (300 °C for 2 h) is considered as a promising catalyst for SMR reaction, since it has a fair methane conversion, and characterized higher CO2 selectivity and lower CO selectivity without compromising the hydrogen purity. More importantly, the least amount of carbon residuals was found in Cu/Ni–SSZ catalyst (300 °C for 2 h), which assured a better lifetime.  相似文献   

7.
Photocatalytic CO2 conversion into solar fuels is a promising technology to alleviate CO2 emissions and energy crises. The development of core-shell structured photocatalysts brings many benefits to the photocatalytic CO2 reduction process, such as high conversion efficiency, sufficient product selectivity, and endurable catalyst stability. Core-shell nanostructured materials with excellent physicochemical features take an irreplaceable position in the field of photocatalytic CO2 reduction. In this review, the recent development of core-shell materials applied for photocatalytic reduction of CO2 is introduced. First, the basic principle of photocatalytic CO2 reduction is introduced. In detail, the classification and synthesis techniques of core-shell catalysts are discussed. Furthermore, it is also emphasized that the excellent properties of the core-shell structure can greatly improve the activity, selectivity, and stability in the process of photocatalytic CO2 reduction. Hopefully, this paper can provide a favorable reference for the preparation of efficient photocatalysts for CO2 reduction.  相似文献   

8.
The increasing CO2 emissions and accompanying climate challenges have boosted the exploration of candidate pathways for storing and utilizing renewable carbon resources. Electrochemical CO2 reduction (ECO2R) has been proven as a promising technology for artificial carbon fixation. Nevertheless, the unsatisfactory multi-carbon (C2+) product selectivity hinders its widespread use. Recently, the indirect route via electrochemical CO reduction (ECOR) to C2+ products has become a potential alternative through the combination with ECO2R. In this review, we briefly summarize the most recent and instructive research in the ECOR development process from advanced ECOR catalysts and reaction mechanisms. Furthermore, the challenges and outlooks based on current understanding in this field are expounded. These insights and perspectives offer meaningful guidance for grasping ECOR and designing relevant catalysts with enhanced C2+ product selectivity.  相似文献   

9.
The rapid increase of the CO2 concentration in the Earth's atmosphere has resulted in numerous environmental issues, such as global warming, ocean acidification, melting of the polar ice, rising sea level, and extinction of species. To search for suitable and capable catalytic systems for CO2 conversion, electrochemical reduction of CO2 (CO2RR) holds great promise. Emerging heterogeneous carbon materials have been considered as promising metal‐free electrocatalysts for the CO2RR, owing to their abundant natural resources, tailorable porous structures, resistance to acids and bases, high‐temperature stability, and environmental friendliness. They exhibit remarkable CO2RR properties, including catalytic activity, long durability, and high selectivity. Here, various carbon materials (e.g., carbon fibers, carbon nanotubes, graphene, diamond, nanoporous carbon, and graphene dots) with heteroatom doping (e.g., N, S, and B) that can be used as metal‐free catalysts for the CO2RR are highlighted. Recent advances regarding the identification of active sites for the CO2RR and the pathway of reduction of CO2 to the final product are comprehensively reviewed. Additionally, the emerging challenges and some perspectives on the development of heteroatom‐doped carbon materials as metal‐free electrocatalysts for the CO2RR are included.  相似文献   

10.
Challenges remain in the development of highly efficient catalysts for selective electrochemical transformation of carbon dioxide (CO2) to high-valued hydrocarbons. In this study, oxygen vacancy-rich Bi2O3 nanosheets coated with polypyrrole (Bi2O3@PPy NSs) are designed and synthesized, as precatalysts for selective electrocatalytic CO2reduction to formate. Systematic material characterization demonstrated that Bi2O3@PPy precatalyst can evolve intoBi2O2CO3@PPy nanosheets with rich oxygen vacancies (Bi2O2CO3@PPy NSs) via electrolyte-mediated conversion and function as the real active catalyst for CO2 reduction reaction electrocatalysis. Coating catalyst with a PPy shell can modulate the interfacial microenvironment of active sites, which work in coordination with rich oxygen vacancies in Bi2O2CO3 and efficiently mediate directional selective CO2 reduction toward formate formation. With the fine-tuning of interfacial microenvironment, the optimized Bi2O3@PPy-2 NSs derived Bi2O2CO3@PPy-2 NSs exhibit a maximum Faradaic efficiency of 95.8% at −0.8 V (versus. reversible hydrogen electrode) for formate production. This work might shed some light on designing advanced catalysts toward selective electrocatalytic CO2 reduction through local microenvironment engineering.  相似文献   

11.
Transformation of CO2 based on metal−organic framework (MOF) catalysts is becoming a hot research topic, not only because it will help to reduce greenhouse gas emission, but also because it will allow for the production of valuable chemicals. In addition, a large number of impressive products have been synthesized by utilizing CO2. In fact, it is the formation of new covalent bonds between CO2 and substrate molecules that successfully result in CO2 solidly inserting into the products, and only four types of new C X bonds, including C H, C C, C N, and C O bonds, are observed in this exploration. An overview of recent progress in constructing C X bonds for CO2 conversion catalyzed by various MOF catalysts is provided. The catalytic mechanism of generating different C X bonds is further discussed according to both structural features of MOFs and the interactions among CO2, substrates, as well as MOFs. The future opportunities and challenges in this field are also tentatively covered.  相似文献   

12.
Reduction and recycling of carbon dioxide (CO2) were performed using a non-thermal plasma produced by a surface discharge at atmospheric pressure. Useful hydrocarbons (CHs) such as dimethyl ether and methane were produced at the discharge voltage of 11 kV, when hydrogen (H2) gas was mixed with CO2 and the mixture ratio was 50%. The conversion of CO2 to the CHs mixing with water vapor of 50% requires a higher discharge voltage of 12 kV. The conversion ratios to the hydrocarbons were several percentage in both H2 mixture and water vapor mixture cases.  相似文献   

13.
Electrocatalytic CO2 reduction (ECR) is a promising technology to simultaneously alleviate CO2-caused climate hazards and ever-increasing energy demands, as it can utilize CO2 in the atmosphere to provide the required feedstocks for industrial production and daily life. In recent years, substantial progress in ECR systems has been achieved by the exploitation of various novel electrode materials. The anodic materials and cathodic catalysts that have, respectively, led to high-efficiency energy input and effective heterogenous catalytic conversion in ECR systems are comprehensively reviewed. Based on the differences in the nature of energy sources and the role of materials used at the anode, the fundamentals of ECR systems, including photo-anode-assisted ECR systems and bio-anode-assisted ECR systems, are explained in detail. Additionally, the cathodic reaction mechanisms and pathways of ECR are described along with a discussion of different design strategies for cathode catalysts to enhance conversion efficiency and selectivity. The emerging challenges and some perspective on both anode materials and cathodic catalysts are also outlined for better development of ECR systems.  相似文献   

14.
《Zeolites》1989,9(6):516-520
The conversion of methanol on Pt-containing zeolites such as KL, NaY, HZSM-5, and H-offretite and on Pt/Al2O3 has been investigated over the temperature range 423–723 K in the presence of 59.8 kPa hydrogen. The possibility of directing the process to various pathways (hydrogenation-dehydrogenation, dehydration, and hydrocarbons formation) is discussed. By balancing the activities of the two catalyst components, one can regulate the surface concentrations of the reagents and products as well as the selectivity of the process. It is suggested that under specific conditions the conversion of methanol can be used as a model reaction for preliminary evaluation of the activity of catalysts.  相似文献   

15.
Electrochemical conversion of carbon dioxide (electrochemical reduction of carbon dioxide) to value‐added products is a promising way to solve CO2 emission problems. This paper describes a facile one‐pot approach to synthesize palladium–copper (Pd–Cu) bimetallic catalysts with different structures. Highly efficient performance and tunable product distributions are achieved due to a coordinative function of both enriched low‐coordinated sites and composition effects. The concave rhombic dodecahedral Cu3Pd (CRD‐Cu3Pd) decreases the onset potential for methane (CH4) by 200 mV and shows a sevenfold CH4 current density at ?1.2 V (vs reversible hydrogen electrode) compared to Cu foil. The flower‐like Pd3Cu (FL‐Pd3Cu) exhibits high faradaic efficiency toward CO in a wide potential range from ?0.7 to ?1.3 V, and reaches a fourfold CO current density at ?1.3 V compared to commercial Pd black. Tafel plots and density functional theory calculations suggest that both the introduction of high‐index facets and alloying contribute to the enhanced CH4 current of CRD‐Cu3Pd, while the alloy effect is responsible for high CO selectivity of FL‐Pd3Cu.  相似文献   

16.
Despite enormous progress and improvement in photocatalytic CO2 reduction reaction (CO2RR), the development of photocatalysts that suppress H2 evolution reaction (HER), during CO2RR, remains still a challenge. Here, new insight is presented for controllable CO2RR selectivity by tuning the architecture of the photocatalyst. Au/carbon nitride with planar structure (p Au/CN) showed high activity for HER with 87% selectivity. In contrast, the same composition with a yolk@shell structure (Y@S Au@CN) exhibited high selectivity of carbon products by suppressing the HER to 26% under visible light irradiation. Further improvement for CO2RR activity was achieved by a surface decoration of the yolk@shell structure with Au25(PET)18 clusters as favorable electron acceptors, resulting in longer charge separation in Au@CN/Auc Y@S structure. Finally, by covering the structure with graphene layers, the designed catalyst maintained high photostability during light illumination and showed high photocatalytic efficiency. The optimized Au@CN/Auc/G Y@S structure displays high photocatalytic CO2RR selectivity of 88%, where the CO and CH4 generations during 8 h are 494 and 198 µmol/gcat., respectively. This approach combining architecture engineering and composition modification provides a new strategy with improved activity and controllable selectivity toward targeting applications in energy conversion catalysis.  相似文献   

17.
Zhu  Yating  Cui  Xiaoya  Liu  Huiling  Guo  Zhenguo  Dang  Yanfeng  Fan  Zhanxi  Zhang  Zhicheng  Hu  Wenping 《Nano Research》2021,14(12):4471-4486

Electrochemical CO2 reduction reaction (CO2RR) is an attractive pathway for closing the anthropogenic carbon cycle and storing intermittent renewable energy by converting CO2 to valuable chemicals and fuels. The production of highly reduced carbon compounds beyond CO and formate, such as hydrocarbon and oxygenate products with higher energy density, is particularly desirable for practical applications. However, the productivity towards highly reduced chemicals is typically limited by high overpotential and poor selectivity due to the multiple electron-proton transfer steps. Tandem catalysis, which is extensively utilized by nature for producing biological macromolecules with multiple enzymes via coupled reaction steps, represents a promising strategy for enhancing the CO2RR performance. Improving the efficiency of CO2RR via tandem catalysis has recently emerged as an exciting research frontier and achieved significant advances. Here we describe the general principles and also considerations for designing tandem catalysis for CO2RR. Recent advances in constructing tandem catalysts, mainly including bimetallic alloy nanostructures, bimetallic heterostructures, bimetallic core-shell nanostructures, bimetallic mixture catalysts, metal-metal organic framework (MOF) and metal-metallic complexes, metal-nonmetal hybrid nanomaterials and copper-free hybrid nanomaterials for boosting the CO2RR performance are systematically summarized. The study of tandem catalysis for CO2RR is still at the early stage, and future research challenges and opportunities are also discussed.

  相似文献   

18.
Metal single-atom catalysts are promising in electrochemical CO2 reduction reaction (CO2RR). The pores and cavities of the supports can promote the exposure of active sites and mass transfer of reactants, hence improve their performance. Here, iron oxalate is added to ZIF-8 and subsequently form hollow carbon nanocages during calcination. The formation mechanism of the hollow structure is studied in depth by controlling variables during synthesis. Kirkendall effect is the main reason for the formation of hollow porous carbon nanocages. The hollow porous carbon nanocages with Fe single atoms exhibit better CO2RR activity and CO selectivity. The diffusion of CO2 facilitated by the mesoporous structure of carbon nanocage results in their superior activity and selectivity. This work has raised an effective strategy for the synthesis of hollow carbon nanomaterials, and provides a feasible pathway for the rational design of electrocatalysts for small molecule activation.  相似文献   

19.
It is a substantial challenge to construct electrocatalysts with high activity, good selectivity, and long-term stability for electrocatalytic reduction of carbon dioxide to formic acid. Herein, bismuth and indium species are innovatively integrated into a uniform heterogeneous spherical structure by a neoteric quasi-microemulsion method, and a novel C@In2O3@Bi50 core-shell structure is constructed through a subsequent one-step phase separation strategy due to melting point difference and Kirkendall effect with the nano-limiting effect of the carbon structure. This core-shell C@In2O3@Bi50 catalyst can selectively reduce CO2 to formate with high selectivity (≈90% faradaic efficiency), large partial current density (24.53 mA cm−2 at −1.36 V), and long-term stability (up to 14.5 h), superior to most of the Bi-based catalysts. The hybrid Bi/In2O3 interfaces of core-shell C@In2O3@Bi will stabilize the key intermediate HCOO* and suppress CO poisoning, benefiting the CO2RR selectivity and stability, while the internal cavity of core-shell structure will improve the reaction kinetics because of the large specific surface area and the enhancement of ion shuttle and electron transfer. Furthermore, the nano-limited domain effect of outmost carbon prevent active components from oxidation and agglomeration, helpful for stabilizing the catalyst. This work offers valuable insights into core-shell structure engineering to promote practical CO2 conversion technology.  相似文献   

20.
This work reports a metal–organic framework (MOF) with less-coordinated copper dimers, which displays excellent electrochemical CO2 reduction (eCO2RR) performance with an advantageous current density of 0.9 A cm−2 and a high Faradaic efficiency of 71% to C2 products. In comparison with MOF with Cu monomers that are present as Cu1 O4 with a coordination number of 3.8 ± 0.2, Cu dimers exist as O3Cu1···Cu2O2 with a coordination number of 2.8 ± 0.1. In situ characterizations together with theoretical calculations reveal that two *CO intermediates are stably adsorbed on each site of less-coordinated Cu dimers, which favors later dimerization via a key intermediate of *CH2CHO. The highly unsaturated dual-atomic Cu provides large-quantity and high-quality actives sites for carbon–carbon coupling, achieving the optimal trade-off between activity and selectivity of eCO2RR to C2 products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号