首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Alteration of stream flow by artificial dams has been observed to be a significant factor for river water environmental changes. Therefore, understanding the biogeochemical processes occurring in the dam‐controlled rivers is important for water resource management. In this paper, δ13C and δ15N signatures of particulate organic matter (POM) in a dam‐controlled subtropical river, Beijiang River, in south China are reported for their spatial and seasonal distributions. POM affected by reservoirs is lighter in δ13C and heavier in δ15N relative to unaffected POM. In April, POM δ13C and δ15N values show less spatial variation in the mainstem, and suggest relatively greater contributions of terrestrial organic matter (OM) to POM. This could be related to the onset of summer monsoon that caused an abrupt increase in terrestrial input to the river by the monsoon‐induced enhancement of rainfall and runoff. In August and December, however, POM isotopic values for the sites affected by the Feilaixia dam reservoir in the middle of the river show marked changes, suggesting aquatic plankton proliferation in the reservoir during the times. Upstream from the reservoirs, POM isotopes are seasonally less varied and suggest mainly terrestrial origin. However, the isotopic signals of aquatic plankton proliferation in the reservoir in August and December is imprinted on the POM isotopic compositions downstream the reservoir, indicating far‐reaching influences of the reservoir on the downstream water environment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Two high‐head dams on the Elwha River in Washington State (USA) have changed the migratory patterns of resident and anadromous fish, limiting Pacific salmon to the lower 7.9 km of a river that historically supported large Pacific salmon runs. To document the effects of the dams prior to their removal, we measured carbon and nitrogen stable isotope ratios of primary producers, benthic macroinvertebrates, and fish, and water chemistry above, between and below the dams. We found that δ15N was significantly higher in fish, stoneflies, black flies, periphyton and macroalgae where salmon still have access. Fish and chloroperlid stoneflies were enriched in δ13C, but the values were more variable than in δ15N. For some taxa, there were also differences between the two river sections that lack salmon, suggesting that factors other than marine‐derived nutrients are structuring longitudinal isotopic profiles. Consistent with trophic theory, macroalgae had the lowest δ15N, followed by periphyton, macroinvertebrates and fish, with a range of 6.9, 6.2 and 7.7‰ below, between, and above the dams, respectively. Water chemistry analyses confirmed earlier reports that the river is oligotrophic. Phosphorous levels in the Elwha were lower than those found in other regional rivers, with significant differences among regulated, unregulated and reference sections. The removal of these dams, among the largest of such projects ever attempted, is expected to facilitate the return of salmon and their marine‐derived nutrients (MDN) throughout the watershed, possibly altering the food web structure, nutrient levels and stable isotope values that we documented. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号