首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the increasing demand for wind energy, it is important to be able to understand and predict the available wind resources. To that end, the present wind tunnel study addresses the flow in the induction and entrance region of wind farms through particle image velocimetry, with focus on differences between actuator disks and two-bladed rotating wind turbine models. Both staggered and aligned farm layouts are examined for three different incoming wind directions. For each layout, 69 disks or turbines are used, and the field of view ranges from 12 rotor diameters upstream of the farms to 8 diameters downstream of the first row. The results show that the induction, or blockage effect, is higher for the disks, even though the thrust (or drag) coefficient is the same. In contrast, the wake is stronger downstream of the turbines. The orientation and layout of the farm do not have a major impact on the results. Modal decomposition of the flow shows that the flow structure similarity between the disk and turbines improves downstream of the second row of wake generating objects, indicating that the substitution of wind turbines by actuator disks is more appropriate for wind farms than for the investigation of single wakes.  相似文献   

2.
The characteristics of turbine spacing for optimal wind farm efficiency were investigated using combined numerical models. The effects of wakes from upstream turbines were predicted by a model capable of determining velocity distributions on a rotor plane, based on Ainslie's approach. The performance results of a wind farm showed good agreement with measurements. The blade element momentum theory, in combination with a dynamic wake model, was applied. Wake model used the results of aerodynamic analysis as input properties. The optimal distance between wind turbines was predicted using a genetic algorithm to maximize efficiency in a wind farm. The results showed that the spacing between the first and the second turbines had the importance to the entire farm's efficiency.  相似文献   

3.
In order to study the effect of vertical staggering in large wind farms, large eddy simulations (LES) of large wind farms with a regular turbine layout aligned with the given wind direction were conducted. In the simulations, we varied the hub heights of consecutive downstream rows to create vertically staggered wind farms. We analysed the effect of streamwise and spanwise turbine spacing, the wind farm layout, the turbine rotor diameter, and hub height difference between consecutive downstream turbine rows on the average power output. We find that vertical staggering significantly increases the power production in the entrance region of large wind farms and is more effective when the streamwise turbine spacing and turbine diameter are smaller. Surprisingly, vertical staggering does not significantly improve the power production in the fully developed regime of the wind farm. The reason is that the downward vertical kinetic energy flux, which brings high velocity fluid from above the wind farm towards the hub height plane, does not increase due to vertical staggering. Thus, the shorter wind turbines are effectively sheltered from the atmospheric flow above the wind farm that supplies the energy, which limits the benefit of vertical staggering. In some cases, a vertically staggered wind farm even produced less power than the corresponding non vertically staggered reference wind farm. In such cases, the production of shorter turbines is significantly negatively impacted while the production of the taller turbine is only increased marginally.  相似文献   

4.
Model wind turbine arrays were developed for the purpose of investigating the wake interaction and turbine canopy layer in a standard cartesian and row‐offset turbine array configurations. Stereographic particle image velocimetry was used to collect flow data upstream and downstream of entrance and exit row turbines in each configuration. Wakes for all cases were analyzed for energy content and recovery behavior including entrainment of high‐momentum flow from above the turbine canopy layer. The row‐offset arrangement of turbines within an array grants an increase in streamwise spacing of devices and allows for greater wake remediation between successive rows. These effects are seen in exit row turbine wakes as changes to statistical quantities including the in‐plane Reynolds stress, , and the production of turbulence. The recovery of wakes also strongly mitigates the perceived underperformance of wind turbines within an array. The flux of kinetic energy is demonstrated to be more localized in the entrance rows and in the offset arrangement. Extreme values for the flux of kinetic energy are about 7.5% less in the exit row of the cartesian arrangement than in the offset arrangement. Measurements of mechanical torque at entrance and exit row turbines lead to curves of power coefficient and demonstrate an increase in efficiency in row‐offset configurations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Wei Tian  Ahmet Ozbay  Hui Hu 《风能》2018,21(2):100-114
An experimental investigation was conducted for a better understanding of the wake interferences among wind turbines sited in wind farms with different turbine layout designs. Two different types of inflows were generated in an atmospheric boundary layer wind tunnel to simulate the different incoming surface winds over typical onshore and offshore wind farms. In addition to quantifying the power outputs and dynamic wind loads acting on the model turbines, the characteristics of the wake flows inside the wind farms were also examined quantitatively. After adding turbines staggered between the first 2 rows of an aligned wind farm to increase the turbine number density in the wind farm, the added staggered turbines did not show a significant effect on the aeromechanical performance of the downstream turbines for the offshore case. However, for the onshore case, while the upstream staggered turbines have a beneficial effect on the power outputs of the downstream turbines, the fatigue loads acting on the downstream turbines were also found to increase considerably due to the wake effects induced by the upstream turbines. With the same turbine number density and same inflow characteristics, the wind turbines were found to be able to generate much more power when they are arranged in a staggered layout than those in an aligned layout. In addition, the characteristics of the dynamic wind loads acting on the wind turbines sited in the aligned layout, including the fluctuation amplitudes and power spectrum, were found to be significantly different from those with staggered layout.  相似文献   

6.
为研究垂直轴风力机风场中机组气动性能受格尼襟翼的影响,采用TSST湍流模型对直线翼垂直轴风力机进行数值模拟研究.结果表明:风场上游风力机组尖速比越大,机组间流体加速效果越显著,使风力机组气动性能高于单风力机;在中低尖速比时,格尼襟翼可有效提升单个风力机气动效率,在尖速比较高时,提升效果并不明显;在风力机组中安装格尼襟翼...  相似文献   

7.
Recent large eddy simulations have led to improved parameterizations of the effective roughness height of wind farms. This effective roughness height can be used to predict the wind velocity at hub‐height as function of the geometric mean of the spanwise and streamwise turbine spacings and the turbine loading factors. Recently, Meyers and Meneveau used these parameterizations to make predictions for the optimal wind turbine spacing in infinitely large wind farms. They found that for a realistic cost ratio between the turbines and the used land surface, the optimal turbine spacing may be considerably larger than that used in conventional wind farms. Here, we extend this analysis by taking the length of the wind farm, i.e. the number of rows in the downstream direction into account and show that the optimal turbine spacing strongly depends on the wind farm length. For small to moderately sized wind farms, the model predictions are consistent with spacings found in operational wind farms. For much larger wind farms, the extended optimal spacing found for infinite wind farms is confirmed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
This paper investigates wake effects on load and power production by using the dynamic wake meander (DWM) model implemented in the aeroelastic code HAWC2. The instationary wind farm flow characteristics are modeled by treating the wind turbine wakes as passive tracers transported downstream using a meandering process driven by the low frequent cross‐wind turbulence components. The model complex is validated by comparing simulated and measured loads for the Dutch Egmond aan Zee wind farm consisting of 36 Vestas V90 turbine located outside the coast of the Netherlands. Loads and production are compared for two distinct wind directions—a free wind situation from the dominating southwest and a full wake situation from northwest, where the observed turbine is operating in wake from five turbines in a row with 7D spacing. The measurements have a very high quality, allowing for detailed comparison of both fatigue and min–mean–max loads for blade root flap, tower yaw and tower bottom bending moments, respectively. Since the observed turbine is located deep inside a row of turbines, a new method on how to handle multiple wakes interaction is proposed. The agreement between measurements and simulations is excellent regarding power production in both free and wake sector, and a very good agreement is seen for the load comparisons too. This enables the conclusion that wake meandering, caused by large scale ambient turbulence, is indeed an important contribution to wake loading in wind farms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
This paper investigates the influence of wake interaction and blockage on the performance of individual turbines in a staggered configuration in a tidal stream farm using the CFD based Immersed Body Force turbine modelling method. The inflow condition to each turbine is unknown in advance making it difficult to apply the correct loading to individual devices. In such cases, it is necessary to establish an appropriate range of operating points by varying the loading or body forces in order to understand the influence of wake interaction and blockage on the performance of the individual devices. The performance of the downstream turbines was heavily affected by the wake interaction from the upstream turbines, though there were accelerated regions within the farm which could be potentially used to increase the overall power extraction from the farm. Laterally closely packed turbines can improve the performance of those turbines due to the blockage effect, but this could also affect the performance of downstream turbines. Thus balancing both the effect of blockage and wake interaction continues to be a huge challenge for optimising the performance of devices in a tidal stream farm.  相似文献   

10.
构建基于NREL 5 MW 风电机组的海上固定式风电场和不同类型的漂浮式风电场,考虑不同类型风电机组尾流特性、平台漂浮特性的差异,在不同工况下对风电场内机组动力学响应进行仿真计算。通过时域分析与箱线图分析,对风电场内各位置处机组在风、浪、尾流联合作用下的塔基载荷进行对比研究。结果表明:在相同工况下,Spar式风电场内机组风轮与平台位移值、塔基载荷在来流方向上最大;在中低风速下,风电场内机组塔基载荷相差较大;高风速时,塔基载荷相近;随着风速的增大,漂浮式机组塔基载荷呈先增大后减小的规律。  相似文献   

11.
The power production of the Lillgrund wind farm is determined numerically using large‐eddy simulations and compared with measurements. In order to simulate realistic atmospheric conditions, pre‐generated turbulence and wind shear are imposed in the computational domain. The atmospheric conditions are determined from data extracted from a met mast, which was erected prior to the establishment of the farm. In order to allocate most of the computational power to the simulations of the wake flow, the turbines are modeled using an actuator disc method where the discs are imposed in the computational domain as body forces which for every time step are calculated from tabulated airfoil data. A study of the influence of imposed upstream ambient turbulence is performed and shows that higher levels of turbulence results in slightly increased total power production and that it is of great importance to include ambient turbulence in the simulations. By introducing ambient atmospheric turbulence, the simulations compare very well with measurements at the studied inflow angles. A final study aiming at increasing the farm production by curtailing the power output of the front row turbines and thus letting more kinetic energy pass downstream is performed. The results, however, show that manipulating only the front row turbines has no positive effect on the farm production, and therefore, more complex curtailment strategies are needed to be tested. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Wind farms are known to modulate large scale structures in and around the wake regions of the turbines. The potential benefits of placing small hub height, small rotor turbines in between the large turbines in a wind farm to take advantage of such modulated large‐scale eddies are explored using large eddy simulation (LES). The study has been carried out in an infinite wind farm framework invoking an asymptotic limit, and the wind turbines are modeled using an actuator line model. The vertically staggered wind turbine arrangements that are studied in the present work consist of rows of large wind turbines, with rows of smaller wind turbines (ie, smaller rotor size and shorter hub height) placed in between the rows of large turbines. The influence of the hub height of the small turbines, in particular, how it affects the interactions between the large and small turbines and consequently their power, along with the multiscale dynamics involved, has been assessed in the current study. It was found that, in the multiscale layouts, the small turbines at lower hub heights operate more efficiently than their homogeneous single‐scale counterparts. In contrast, the small turbines with higher hub heights incur a loss of power compared with the corresponding single‐scale arrangements.  相似文献   

13.
A fast and reasonably accurate numerical three‐dimensional wake model able to predict the flow behaviour of a wind farm over a flat terrain has been developed. The model is based on the boundary‐layer approximation of the Navier–Stokes equations, linearized around the incoming atmospheric boundary layer, with the assumption that the wind turbines provide a small perturbation to the velocity field. The linearization of the actuator‐disc theory brought additional insights that could be used to understand the behaviour, as well as the limitations, of a flow model based on linear methods: for instance, it is shown that an adjustment of the turbine's thrust coefficient is necessary in order to obtain the same wake velocity field provided by the actuator disc theory within the used linear framework. The model is here validated against two independent wind‐tunnel campaigns with a small and a large wind farm aimed at the characterization of the flow above and upstream of the farms, respectively. The developed model is, in contrary to current engineering wake models, able to account for effects occurring in the upstream flow region, thereby including more physical mechanisms than other simplified approaches. The conducted simulations (in agreement with the measurement results) show that the presence of a wind farm affects the approaching flow far more upstream than generally expected and definitely beyond the current industrial standards. Despite the model assumptions, several velocity statistics above wind farms have been properly estimated providing an insight into the transfer of momentum inside the turbine rows. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The recently developed k?fP eddy‐viscosity model is applied to one on‐shore and two off‐shore wind farms. The results are compared with power measurements and results of the standard k? eddy‐viscosity model. In addition, the wind direction uncertainty of the measurements is used to correct the model results with a Gaussian filter. The standard k? eddy‐viscosity model underpredicts the power deficit of the first downstream wind turbines, whereas the k?fP eddy‐viscosity model shows a good agreement with the measurements. However, the difference in the power deficit predicted by the turbulence models becomes smaller for wind turbines that are located further downstream. Moreover, the difference between the capability of the turbulence models to estimate the wind farm efficiency reduces with increasing wind farm size and wind turbine spacing. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Aerodynamic wake interaction between commercial scale wind turbines can be a significant source of power losses and increased fatigue loads across a wind farm. Significant research has been dedicated to the study of wind turbine wakes and wake model development. This paper profiles influential wake regions for an onshore wind farm using 6 months of recorded SCADA (supervisory control and data acquisition) data. An average wind velocity deficit of over 30% was observed corresponding to power coefficient losses of 0.2 in the wake region. Wind speed fluctuations are also quantified for an array of turbines, inferring an increase in turbulence within the wake region. A study of yaw data within the array showed turbine nacelle misalignment under a range of downstream wake angles, indicating a characteristic of wind turbine behaviour not generally considered in wake studies. The turbines yaw independently in order to capture the increased wind speeds present due to the lateral influx of turbulent wind, contrary to many experimental and simulation methods found in the literature. Improvements are suggested for wind farm control strategies that may improve farm‐wide power output. Additionally, possible causes for wind farm wake model overestimation of wake losses are proposed.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
It is well accepted that the wakes created by upstream turbines significantly impact on the power production and fatigue loading of downstream turbines and that this phenomenon affects wind farm performance. Improving the understanding of wake effects and overall efficiency is critical for the optimisation of layout and operation of increasingly large wind farms. In the present work, the NREL 5‐MW reference turbine was simulated using blade element embedded Reynolds‐averaged Navier‐Stokes computations in sheared onset flow at three spatial configurations of two turbines at and above rated flow speed to evaluate the effects of wakes on turbine performance and subsequent wake development. Wake recovery downstream of the rearward turbine was enhanced due to the increased turbulence intensity in the wake, although in cases where the downstream turbine was laterally offset from the upstream turbine this resulted in relatively slower recovery. Three widely used wake superposition models were evaluated and compared with the simulated flow‐field data. It was found that when the freestream hub‐height flow speed was at the rated flow speed, the best performing wake superposition model varied depending according to the turbine array layout. However, above rated flow speed where the wake recovery distance is reduced, it was found that linear superposition of single turbine velocity deficits was the best performing model for all three spatial layouts studied.  相似文献   

17.
A row of wind turbine rotors with a mutual spacing of three diameters is simulated using both Reynolds averaged Navier‐Stokes (RANS) simulations and a simple inviscid vortex model. The angle between the incoming wind and the line connecting the turbines is varied between 45 and 90 degrees. The simulations show that the power production of the turbines deviate significantly compared with a corresponding isolated turbine even though there is no direct wake‐turbine interaction at the considered wind directions. Nevertheless, both models indicate marked alterations in the upstream flow, which directly link to the turbines' power adjustments. Thus, turbines which are placed laterally relative to the prevailing wind (as seen at various test sites) have, at least numerically, a mutual effect on each other. Therefore, they might not necessarily produce the same power as a stand‐alone turbine. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
以某典型风电场为例,采用尾流模型模拟研究风电机组启停优化对风电机组尾流干涉和发电量的影响。在速度恢复系数小于0.06时,典型机位的停机可增加风电场全场发电量。以中国北方某实际风电场为例进行现场试验,在主风向下,通过调度上游风电机组的启停,实现区域内风电机组发电量提升,验证方法的有效性。  相似文献   

19.
The wind turbines with a flanged-diffuser shroud -so called "wind lens turbine"- are developed as one of high performance wind turbines by Ohya et al. In order to investigate the flow characteristics and flow acceleration, the paper presents the flow velocity measurements of a long-type and a compact-type wind turbines with a flanged-diffuser shroud by particle image velocimetry. In the case of the long type wind turbine, the velocity vec- tors of the inner flow field of the diffuser for turbine blades rotating and no blades rotating are presented at Rey- nolds number, 0.9x105. Fur~thermore the flow fields between with and without rotating are compared. Through the PIV measurement results, one can realize that the turbine blades rotating affects as suppress the disturbance and the flow separation near the inner wall of the diffuser. The time average velocity vectors are made on the av- erage of the instantaneous velocity data. There are two large vortices in downstream region of the diffuser. One vortex behind the flange acts as suck in wind to the diffuser and raise the inlet flow velocity. Another large vortex appears in downstream. It might be act as blockage vortex of main flow. The large blockage vortex is not clear in the instantaneous velocity vectors, however it exists clearly in the time average flow field. The flow field around the wind turbine with a compact-type flanged-diffuser shroud is also investigated. The flow pattern behind the flange of the compact-type turbine is the same as the long-type one. It means that the effect of flow acceleration is caused by the unsteady vortices behind the flange. The comparison with CFD and PIV results of meridional time-average streamlines after the compact-type diffuser is also presented.  相似文献   

20.
基于Park模型尾流区线性膨胀假设和径向风速呈高斯分布假设,提出一种新的修正型的工程尾流模型Park-Gauss模型,采用小生境遗传算法,并考虑大气稳定性对风电场布局优化的影响。结果表明:对常风速单风向风电场微观选址布局优化结果是风力机组主要布置在垂直风向的第1排和最后1排;大气边界层稳定性对风电场微观选址布局优化影响显著,在大气边界层不稳定状态下,风电场安装机组总数最多、发电总量及风电场利用效率最高,中性状态和稳定状态依次次之。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号