首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The lithium–air (Li–O2) battery has been deemed one of the most promising next‐generation energy‐storage devices due to its ultrahigh energy density. However, in conventional porous carbon–air cathodes, the oxygen gas and electrolyte often compete for transport pathways, which limit battery performance. Here, a novel textile‐based air cathode is developed with a triple‐phase structure to improve overall battery performance. The hierarchical structure of the conductive textile network leads to decoupled pathways for oxygen gas and electrolyte: oxygen flows through the woven mesh while the electrolyte diffuses along the textile fibers. Due to noncompetitive transport, the textile‐based Li–O2 cathode exhibits a high discharge capacity of 8.6 mAh cm?2, a low overpotential of 1.15 V, and stable operation exceeding 50 cycles. The textile‐based structure can be applied to a range of applications (fuel cells, water splitting, and redox flow batteries) that involve multiple phase reactions. The reported decoupled transport pathway design also spurs potential toward flexible/wearable Li–O2 batteries.  相似文献   

2.
The aprotic lithium–oxygen (Li–O2) battery has excited huge interest due to it having the highest theoretical energy density among the different types of rechargeable battery. The facile achievement of a practical Li–O2 battery has been proven unrealistic, however. The most significant barrier to progress is the limited understanding of the reaction processes occurring in the battery, especially during the charging process on the positive electrode. Thus, understanding the charging mechanism is of crucial importance to enhance the Li–O2 battery performance and lifetime. Here, recent progress in understanding the electrochemistry and chemistry related to charging in Li–O2 batteries is reviewed along with the strategies to address the issues that exist in the charging process at the present stage. The properties of Li2O2 and the mechanisms of Li2O2 oxidation to O2 on charge are discussed comprehensively, as are the accompanied parasitic chemistries, which are considered as the underlying issues hindering the reversibility of Li–O2 batteries. Based on the detailed discussion of the charging mechanism, innovative strategies for addressing the issues for the charging process are discussed in detail. This review has profound implications for both a better understanding of charging chemistry and the development of reliable rechargeable Li–O2 batteries in the future.  相似文献   

3.
Li–O2 batteries have received much attention due to their extremely large theoretical energy density. However, the high overpotentials required for charging Li–O2 batteries lower their energy efficiency and degrade the electrolytes and carbon electrodes. This problem is one of the main obstacles in developing practical Li–O2 batteries. To solve this problem, it is important to facilitate the oxidation of Li2O2 upon charging by using effective electrocatalysis. Using solid catalysts is not too effective for oxidizing the electronically isolating Li‐peroxide layers. In turn, for soluble catalysts, red‐ox mediators (RMs) are homogeneously dissolved in the electrolyte solutions and can effectively oxidize all of the Li2O2 precipitated during discharge. RMs can decompose solid Li2O2 species no matter their size, morphology, or thickness and thus dramatically increase energy efficiency. However, some negative side effects, such as the shuttle reactions of RMs and deterioration of the Li‐metal occur. Therefore, it is necessary to study the activity and stability of RMs in Li–O2 batteries in detail. Herein, recent studies related to redox mediators are reviewed and the mechanisms of redox reactions are illustrated. The development opportunities of RMs for this important battery technology are discussed and future directions are suggested.  相似文献   

4.
Porous materials possessing high surface area, large pore volume, tunable pore structure, superior tailorability, and dimensional effect have been widely applied as components of lithium–oxygen (Li–O2) batteries. Herein, the theoretical foundation of the porous materials applied in Li–O2 batteries is provided, based on the present understanding of the battery mechanism and the challenges and advantageous qualities of porous materials. Furthermore, recent progress in porous materials applied as the cathode, anode, separator, and electrolyte in Li–O2 batteries is summarized, together with corresponding approaches to address the critical issues that remain at present. Particular emphasis is placed on the importance of the correlation between the function-orientated design of porous materials and key challenges of Li–O2 batteries in accelerating oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) kinetics, improving the electrode stability, controlling lithium deposition, suppressing the shuttle effect of the dissolved redox mediators, and alleviating electrolyte decomposition. Finally, the rational design and innovative directions of porous materials are provided for their development and application in Li–O2 battery systems.  相似文献   

5.
The practical application of the lithium–sulfur (Li–S) battery is seriously restricted by its shuttle effect, low conductivity, and low sulfur loading. Herein, first-principles calculations are conducted to verify that the introduction of oxygen vacancies in TiO2 not only enhances polysulfide adsorption but also greatly improves the catalytic ability and both the ion and electron conductivities. A commercial polypropylene (PP) separator decorated with TiO2 nanosheets with oxygen vacancies (OVs-TiO2@PP) is fabricated as a strong polysulfide barrier for the Li–S battery. The thickness of the OVs-TiO2 modification layer is only 500 nm with a low areal mass of around 0.12 mg cm−2, which enhances the fast lithium-ion penetration and the high energy density of the whole cell. As a result, the cell with the OVs-TiO2@PP separator exhibits a stable electrochemical behavior at 2.0 C over 500 cycles, even under a high sulfur loading of 7.1 mg cm−2, and an areal capacity of 5.83 mAh cm−2 remains after 100 cycles. The proposed strategy of engineering oxygen vacancies is expected to have wide applications in Li–S batteries.  相似文献   

6.
Triggering reversible lattice oxygen redox (LOR) in oxide cathodes is a paradigmatic approach to overcome the capacity ceiling determined by orthodox transition-metal (TM) redox. However, the LOR reactions in P2-structured Na-layered oxides are commonly accompanied by irreversible nonlattice oxygen redox (non-LOR) and large local structural rearrangements, bringing about capacity/voltage fading and constantly evolving charge/discharge voltage curves. Herein, a novel Na0.615Mg0.154Ti0.154Mn0.6150.077O2 (◻ = TM vacancies) cathode with both Na O Mg and Na O ◻ local configurations is deliberately designed. Intriguingly, the activating of oxygen redox at middle-voltage region (2.5–4.1 V) via Na O ◻ configuration helps in maintaining the high-voltage plateau from LOR (≈4.38 V) and stable charge/discharge voltage curves even after 100 cycles. Hard X-ray absorption spectroscopy (hXAS), solid-state NMR, and electron paramagnetic resonance studies demonstrate that both the involvement of non-LOR at high-voltage and the structural distortions originating from Jahn–Teller distorted Mn3+O6 at low-voltage are effectively restrained in Na0.615Mg0.154Ti0.154Mn0.6150.077O2. Resultantly, the P2 phase is well retained in a wide electrochemical window of 1.5–4.5 V (vs Na+/Na), resulting in an extraordinary capacity retention of 95.2% after 100 cycles. This work defines an effective approach to upgrade the lifespan of Na-ion battery with reversible high-voltage capacity provided by LOR.  相似文献   

7.
Lithium–oxygen (Li–O2) batteries are attracting more attention owing to their superior theoretical energy density compared to conventional Li‐ion battery systems. With regards to the catalytically electrochemical reaction on a cathode, the electrocatalyst plays a key role in determining the performance of Li–O2 batteries. Herein, a new 3D hollow α‐MnO2 framework (3D α‐MnO2) with porous wall assembled by hierarchical α‐MnO2 nanowires is prepared by a template‐induced hydrothermal reaction and subsequent annealing treatment. Such a distinctive structure provides some essential properties for Li–O2 batteries including the intrinsic high catalytic activity of α‐MnO2, more catalytic active sites of hierarchical α‐MnO2 nanowires on 3D framework, continuous hollow network and rich porosity for the storage of discharge product aggregations, and oxygen diffusion. As a consequence, 3D α‐MnO2 achieves a high specific capacity of 8583 mA h g?1 at a current density of 100 mA g?1, a superior rate capacity of 6311 mA h g?1 at 300 mA g?1, and a very good cycling stability of 170 cycles at a current density of 200 mA g?1 with a fixed capacity of 1000 mA h g?1. Importantly, the presented design strategy of 3D hollow framework in this work could be extended to other catalytic cathode design for Li–O2 batteries.  相似文献   

8.
Rechargeable aprotic lithium (Li)–O2 batteries with high theoretical energy densities are regarded as promising next‐generation energy storage devices and have attracted considerable interest recently. However, these batteries still suffer from many critical issues, such as low capacity, poor cycle life, and low round‐trip efficiency, rendering the practical application of these batteries rather sluggish. Cathode catalysts with high oxygen reduction reaction (ORR) and evolution reaction activities are of particular importance for addressing these issues and consequently promoting the application of Li–O2 batteries. Thus, the rational design and preparation of the catalysts with high ORR activity, good electronic conductivity, and decent chemical/electrochemical stability are still challenging. In this Review, the strategies are outlined including the rational selection of catalytic species, the introduction of a 3D porous structure, the formation of functional composites, and the heteroatom doping which succeeded in the design of high‐performance cathode catalysts for stable Li–O2 batteries. Perspectives on enhancing the overall electrochemical performance of Li–O2 batteries based on the optimization of the properties and reliability of each part of the battery are also made. This Review sheds some new light on the design of highly active cathode catalysts and the development of high‐performance lithium–O2 batteries.  相似文献   

9.
The oxygen evolution reaction (OER) is pivotal in multiple gas‐involved energy conversion technologies, such as water splitting, rechargeable metal–air batteries, and CO2/N2 electrolysis. Emerging anion‐redox chemistry provides exciting opportunities for boosting catalytic activity, and thus mastering lattice‐oxygen activation of metal oxides and identifying the origins are crucial for the development of advanced catalysts. Here, a strategy to activate surface lattice‐oxygen sites for OER catalysis via constructing a Ruddlesden–Popper/perovskite hybrid, which is prepared by a facile one‐pot self‐assembly method, is developed. As a proof‐of‐concept, the unique hybrid catalyst (RP/P‐LSCF) consists of a dominated Ruddlesden–Popper phase LaSr3Co1.5Fe1.5O10‐δ (RP‐LSCF) and second perovskite phase La0.25Sr0.75Co0.5Fe0.5O3‐δ (P‐LSCF), displaying exceptional OER activity. The RP/P‐LSCF achieves 10 mA cm?2 at a low overpotential of only 324 mV in 0.1 m KOH, surpassing the benchmark RuO2 and various state‐of‐the‐art metal oxides ever reported for OER, while showing significantly higher activity and stability than single RP‐LSCF oxide. The high catalytic performance for RP/P‐LSCF is attributed to the strong metal–oxygen covalency and high oxygen‐ion diffusion rate resulting from the phase mixture, which likely triggers the surface lattice‐oxygen activation to participate in OER. The success of Ruddlesden–Popper/perovskite hybrid construction creates a new direction to design advanced catalysts for various energy applications.  相似文献   

10.
Owing to the capacity boost from oxygen redox activities, Li‐rich cation‐disordered rocksalts (LRCDRS) represent a new class of promising high‐energy Li‐ion battery cathode materials. Redox‐inactive transition‐metal (TM) cations, typically d0 TM, are essential in the formation of rocksalt phases, however, their role in electrochemical performance and cathode stability is largely unknown. In the present study, the effect of two d0 TM (Nb5+ and Ti4+) is systematically compared on the redox chemistry of Mn‐based model LRCDRS cathodes, namely Li1.3Nb0.3Mn0.4O2 (LNMO), Li1.25Nb0.15Ti0.2Mn0.4O2 (LNTMO), and Li1.2Ti0.4Mn0.4O2 (LTMO). Although electrochemically inactive, d0 TM serves as a modulator for oxygen redox, with Nb5+ significantly enhancing initial charge storage contribution from oxygen redox. Further studies using differential electrochemical mass spectroscopy and resonant inelastic X‐ray scattering reveal that Ti4+ is better in stabilizing the oxidized oxygen anions (On?, 0 < n < 2), leading to a more reversible O redox process with less oxygen gas release. As a result, much improved chemical, structural and cycling stabilities are achieved on LTMO. Detailed evaluation on the effect of d0 TM on degradation mechanism further suggests that proper design of redox‐inactive TM cations provides an important avenue to balanced capacity and stability in this newer class of cathode materials.  相似文献   

11.
Alkali metal‐oxygen (Li‐O2, Na‐O2) batteries have attracted a great deal of attention recently due to their high theoretical energy densities, comparable to gasoline, making them attractive candidates for application in electrical vehicles. However, the limited cycling life and low energy efficiency (high charging overpotential) of these cells hinder their commercialization. The Li‐O2 battery system has been extensively studied in this regard during the past decade. Compared to the numerous reports of Li‐O2 batteries, the research on Na‐O2 batteries is still in its infancy. Although, Na‐O2 batteries show a number of attractive properties such as low charging overpotential and high round‐trip energy efficiency, their cycling life is currently limited to a few tens of cycles. Therefore, understanding the chemistry behind Na‐O2 cells is critical towards enhancing their performance and advancing their development. Chemical and electrochemical reactions of Na‐O2 batteries are reviewed and compared with those of Li‐O2 batteries in the present review, as well as recent works on the chemical composition and morphology of the discharge products in these batteries. Furthermore, the determining kinetics factors for controlling the chemical composition of the discharge products in Na‐O2 cells are discussed and the potential research directions toward improving Na‐O2 cells are proposed.  相似文献   

12.
Rationally designing efficient catalysts is the key to promote the kinetics of oxygen electrode reactions in lithium-oxygen (Li-O2) battery. Herein, nitrogen-doped Ti3C2 MXene prepared via hydrothermal method (N-Ti3C2(H)) is studied as the efficient Li-O2 battery catalyst. The nitrogen doping increases the disorder degree of N-Ti3C2(H) and provides abundant active sites, which is conducive to the uniform formation and decomposition of discharge product Li2O2. Besides, density functional theory calculations confirm that the introduction of nitrogen can effectively modulate the 3d orbital occupation of Ti in N-Ti3C2(H), promote the electron exchange between Ti 3d orbital and O 2p orbital, and accelerate oxygen electrode reactions. Specifically, the N-Ti3C2(H) based Li-O2 battery delivers large discharge capacity (11 679.8 mAh g−1) and extended stability (372 cycles). This work provides a valuable strategy for regulating 3d orbital occupancy of transition metal in MXene to improve the catalytic activity of oxygen electrode reactions in Li-O2 battery.  相似文献   

13.
Lithium–oxygen (Li–O2) batteries have received extensive attention owing to ultrahigh theoretical energy density. Compared to typical discharge product Li2O2, LiOH has attracted much attention for its better chemical and electrochemical stability. Large-scale applications of Li–O2 batteries with LiOH chemistry are hampered by the serious internal shuttling of the water additives with the desired 4e electrochemical reactions. Here, a metal organic framework-derived “water-trapping” single-atom-Co-N4/graphene catalyst (Co-SA-rGO) is provided that successfully mitigates the water shuttling and enables the direct 4e catalytic reaction of LiOH in the aprotic Li–O2 battery. The Co-N4 center is more active toward proton-coupled electron transfer, benefiting - direction 4e formation of LiOH. 3D interlinked networks also provide large surface area and mesoporous structures to trap ≈12 wt% H2O molecules and offer rapid tunnels for O2 diffusion and Li+ transportation. With these unique features, the Co-SA-rGO based Li–O2 battery delivers a high discharge platform of 2.83 V and a large discharge capacity of 12 760.8 mAh g−1. Also, the battery can withstand corrosion in the air and maintain a stable discharge platform for 220 cycles. This work points out the direction of enhanced electron/proton transfer for the single-atom catalyst design in Li–O2 batteries.  相似文献   

14.
Transition metal catalysts are regarded as one of promising alternatives to replace traditional Pt-based catalysts for oxygen reduction reaction (ORR). In this work, an efficient ORR catalyst is synthesized by confining Fe3C nanoparticles into N, S co-doped porous carbon nanosheets (Fe3C/N,S-CNS) via high-temperature pyrolysis, in which 5-sulfosalicylic acid (SSA) demonstrates as an ideal complexing agent for iron (ΙΙΙ) acetylacetonate while g-C3N4 behaves as a nitrogen source. The influence of the pyrolysis temperature on the ORR performance is strictly examined in the controlled experiments. The obtained catalyst exhibits excellent ORR performance (E1/2 = 0.86 V; Eonset = 0.98 V) in alkaline electrolyte, coupled by exhibiting the superior catalytic activity and stability (E1/2 = 0.83 V, Eonset = 0.95 V) to Pt/C in acidic media. In parallel, its ORR mechanism is carefully illustrated by the density functional theory (DFT) calculations, especially the role of the incorporated Fe3C played in the catalytic process. The catalyst-assembled Zn-air battery also exhibits a much higher power density (163 mW cm–2) and ultralong cyclic stability in the charge–discharge test for 750 h with a gap increase down to 20 mV. This study provides some constructive insights for preparation of advanced ORR catalysts in green energy conversion units correlated systems.  相似文献   

15.
To achieve a high reversibility and long cycle life for Li–O2 battery system, the stable tissue‐directed/reinforced bifunctional separator/protection film (TBF) is in situ fabricated on the surface of metallic lithium anode. It is shown that a Li–O2 cell composed of the TBF‐modified lithium anodes exhibits an excellent anodic reversibility (300 cycles) and effectively improved cathodic long lifetime (106 cycles). The improvement is attributed to the ability of the TBF, which has chemical, electrochemical, and mechanical stability, to effectively prevent direct contact between the surface of the lithium anode and the highly reactive reduced oxygen species (Li2O2 or its intermediate LiO2) in cell. It is believed that the protection strategy describes here can be easily extended to other next‐generation high energy density batteries using metal as anode including Li–S and Na–O2 batteries.  相似文献   

16.
A critical bottleneck limiting the performance of rechargeable zinc–air batteries lies in the inefficient bifunctional electrocatalysts for the oxygen reduction and evolution reactions at the air electrodes. Hybridizing transition‐metal oxides with functional graphene materials has shown great advantages due to their catalytic synergism. However, both the mediocre catalytic activity of metal oxides and the restricted 2D mass/charge transfer of graphene render these hybrid catalysts inefficient. Here, an effective strategy combining anion substitution, defect engineering, and the dopant effect to address the above two critical issues is shown. This strategy is demonstrated on a hybrid catalyst consisting of sulfur‐deficient cobalt oxysulfide single crystals and nitrogen‐doped graphene nanomeshes (CoO0.87S0.13/GN). The defect chemistries of both oxygen‐vacancy‐rich, nonstoichiometric cobalt oxysulfides and edge‐nitrogen‐rich graphene nanomeshes lead to a remarkable improvement in electrocatalytic performance, where CoO0.87S0.13/GN exhibits strongly comparable catalytic activity to and much better stability than the best‐known benchmark noble‐metal catalysts. In application to quasi‐solid‐state zinc–air batteries, CoO0.87S0.13/GN as a freestanding catalyst assembly benefits from both structural integrity and enhanced charge transfer to achieve efficient and very stable cycling operation over 300 cycles with a low discharge–charge voltage gap of 0.77 V at 20 mA cm?2 under ambient conditions.  相似文献   

17.
The Li–air battery represents a promising power candidate for future electronics due to its extremely high energy density. However, the use of Li–air batteries is largely limited by their poor cyclability in ambient air. Herein, Li–air batteries with ultralong 610 cycles in ambient air are created by combination of low‐density polyethylene film that prevents water erosion and gel electrolyte that contains a redox mediator of LiI. The low‐density polyethylene film can restrain the side reactions of the discharge product of Li2O2 to Li2CO3 in ambient air, while the LiI can facilitate the electrochemical decomposition of Li2O2 during charging, which improves the reversibility of the Li–air battery. All the components of the Li–air battery are flexible, which is particularly desirable for portable and wearable electronic devices.  相似文献   

18.
High‐performance flexible lithium–oxygen (Li–O2) batteries with excellent safety and stability are urgently required due to the rapid development of flexible and wearable devices. Herein, based on an integrated solid‐state design by taking advantage of component‐interaction between poly(vinylidene fluoride‐co‐hexafluoropropylene) and nanofumed silica in polymer matrix, a stable quasi‐solid‐state electrolyte (PS‐QSE) for the Li–O2 battery is proposed. The as‐assembled Li–O2 battery containing the PS‐QSE exhibits effectively improved anodic reversibility (over 200 cycles, 850 h) and cycling stability of the battery (89 cycles, nearly 900 h). The improvement is attributed to the stability of the PS‐QSE (including electrochemical, chemical, and mechanical stability), as well as the effective protection of lithium anode from aggressive soluble intermediates generated in cathode. Furthermore, it is demonstrated that the interaction among the components plays a pivotal role in modulating the Li‐ion conducting mechanism in the as‐prepared PS‐QSE. Moreover, the pouch‐type PS‐QSE based Li–O2 battery also shows wonderful flexibility, tolerating various deformations thanks to its integrated solid‐state design. Furthermore, holes can be punched through the Li–O2 battery, and it can even be cut into any desired shape, demonstrating exceptional safety. Thus, this type of battery has the potential to meet the demands of tailorability and comformability in flexible and wearable electronics.  相似文献   

19.
Controlled synthesis of highly efficient, stable, and cost‐effective oxygen reaction electrocatalysts with atomically‐dispersed Me–Nx–C active sites through an effective strategy is highly desired for high‐performance energy devices. Herein, based on regenerated silk fibroin dissolved in ferric chloride and zinc chloride aqueous solution, 2D porous carbon nanosheets with atomically‐dispersed Fe–Nx–C active sites and very large specific surface area (≈2105 m2 g?1) are prepared through a simple thermal treatment process. Owing to the 2D porous structure with large surface area and atomic dispersion of Fe–Nx–C active sites, the as‐prepared silk‐derived carbon nanosheets show superior electrochemical activity toward the oxygen reduction reaction with a half‐wave potential (E1/2) of 0.853 V, remarkable stability with only 11 mV loss in E1/2 after 30 000 cycles, as well as good catalytic activity toward the oxygen evolution reaction. This work provides a practical and effective approach for the synthesis of high‐performance oxygen reaction catalysts towards advanced energy materials.  相似文献   

20.
An efficient metal‐free catalyst is presented for oxygen evolution and reduction based on oxidized laser‐induced graphene (LIG‐O). The oxidation of LIG by O2 plasma to form LIG‐O boosts its performance in the oxygen evolution reaction (OER), exhibiting a low onset potential of 260 mV with a low Tafel slope of 49 mV dec?1, as well as an increased activity for the oxygen reduction reaction. Additionally, LIG‐O shows unexpectedly high activity in catalyzing Li2O2 decomposition in Li‐O2 batteries. The overpotential upon charging is decreased from 1.01 V in LIG to 0.63 V in LIG‐O. The oxygen‐containing groups make essential contributions, not only by providing the active sites, but also by facilitating the adsorption of OER intermediates and lowering the activation energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号