共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, the problem of finite‐time H ∞ control is addressed for a class of discrete‐time switched nonlinear systems with time delay. The concept of H ∞ finite‐time boundedness is first introduced for discrete‐time switched delay systems. Next, a set of switching signals are designed by using the average dwell time approach, under which some delay‐dependent sufficient conditions are derived to guarantee the H ∞ finite‐time boundedness of the closed‐loop system. Then, a finite‐time H ∞ state feedback controller is also designed by solving such conditions. Furthermore, the problem of uniform finite‐time H ∞ stabilization is also resolved. All the conditions are cast into linear matrix inequalities, which can be easily checked by using recently developed algorithms for solving linear matrix inequalities. A numerical example and a water‐quality control system are provided to demonstrate the effectiveness of the main results. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
2.
This paper formulates and solves the robust H∞ control problem for discrete‐time nonlinear switching systems. The H∞ control problem is interpreted as the l2 finite gain control problem and is studied using a dissipative systems theory for switched systems. Both state and measurement feedback control problems are formulated as dynamic games and solved using dynamic programming. The partially observed dynamic game corresponding to the measurement feedback control problem is solved by transforming into a completely observed, full state infinite‐dimensional game problem using information states. Our results are illustrated with an example. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
3.
This paper considers mean‐square exponential stability and H∞ control problems for Markovian jump systems (MJSs) with time delays which are time‐varying in an interval and depend on system mode. By exploiting a novel Lyapunov‐Krasovskii functional which takes into account the range of delay, and by making use of some techniques, new delay‐range‐dependent stability result and bounded real lemma for MJSs are obtained, where the introduction of the lower bound of delay is shown to be advantageous for reducing conservatism. Moreover, a sufficient condition for the solvability of the H∞ control problem is derived in terms of linear matrix inequalities. Finally, illustrative examples are presented to show the advantage and effectiveness of the proposed approaches. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society 相似文献
4.
Jun Zhao 《国际强度与非线性控制杂志
》2016,26(14):3186-3206
》2016,26(14):3186-3206
In this paper, we investigate the H∞ control problem for uncertain switched nonlinear systems with passive and non‐passive subsystems. For any given average dwell time, any given passivity rate and any given disturbance attenuation level, we design feedback controllers of subsystems, which may depend on the pre‐given constants, to solve the H∞ control problem for the uncertain switched nonlinear systems for all admissible uncertainties. For linear systems, the exponential small‐time norm‐observability is shown to be preserved under disturbance. Two examples are provided to demonstrate the effectiveness of the proposed design method. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
5.
This paper is concerned with the quantized state feedback H∞ control problem for discrete‐time linear time‐invariant systems. The quantizer considered here is dynamic and composed of an adjustable “zoom” parameter and a static quantizer. Static quantizer ranges are with practical significance and fully considered here. A quantized H∞ controller design strategy is proposed with taking quantizer errors into account, where an iterative linear matrix inequality (LMI) based optimization algorithm is developed to minimize static quantizer ranges with meeting H∞ performance requirement for quantized closed‐loop systems. An example is presented to illustrate the effectiveness of the proposed method. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society 相似文献
6.
In this paper, we investigate the H∞ control problem for a class of cascade switched nonlinear systems consisting of two nonlinear parts which are also switched systems using the multiple Lyapunov function method. Firstly, we design the state feedback controller and the switching law, which guarantees that the corresponding closed‐loop system is globally asymptotically stable and has a prescribed H∞ performance level. This method is suitable for a case where none of the switched subsystems is asymptotically stable. Then, as an application, we study the hybrid H∞ control problem for a class of nonlinear cascade systems. Finally, an example is given to illustrate the feasibility of our results. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society 相似文献
7.
Jun Zhao 《国际强度与非线性控制杂志
》2015,25(3):430-442
》2015,25(3):430-442
This paper studies the problem of H ∞ output tracking control for a class of discrete‐time switched systems. Neither the measurability of the system state nor the solvability of the output tracking control problem for each individual subsystem is required. We design controllers for subsystems and a switching law to solve the H ∞ output tracking problem for the switched system. The designed controllers use only the measured output feedback, and the switching law is based on the measured output tracking error. In addition, the quadratic function corresponding to each subsystem is not required to be positive definite. A numerical example is provided to demonstrate the feasibility and validity of the proposed design method. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
8.
In this paper, the problem of exponential H∞ filter problem for a class of discrete‐time polytopic uncertain switched linear systems with average dwell time switching is investigated. The exponential stability result of the general discrete‐time switched systems using a discontinuous piecewise Lyapunov function approach is first explored. Then, a new µ‐dependent approach is proposed, which means the analysis or synthesis of the underlying systems is dependent on the increase degree µ of the piecewise Lyapunov function at the switching instants. A mode‐dependent full‐order filter is designed such that the developed filter error system is robustly exponentially stable and achieves an exponential H∞ performance. Sufficient existence conditions for the desired filter are derived and formulated in terms of a set of linear matrix inequalities, and consequently the minimal average dwell time and the corresponding filter are obtained from such conditions for a given system decay degree. A numerical example is presented to demonstrate the potential and effectiveness of the developed theoretical results. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
9.
Linear, state‐delayed, continuous‐time systems are considered with both stochastic and norm‐bounded deterministic uncertainties in the state–space model. The problem of robust dynamic H∞ output‐feedback control is solved, for the stationary case, via the input–output approach where the system is replaced by a nonretarded system with additional deterministic norm‐bounded uncertainties. A delay‐dependent result is obtained which involves the solution of a simple linear matrix inequality. In this problem, a cost function is defined which is the expected value of the standard H∞ performance cost with respect to the stochastic parameters. A practical example taken from the field of guidance control is given that demonstrates the applicability of the theory. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
10.
In this paper, the problem of delay‐dependent exponential H ∞ filtering for discrete‐time switched delay systems is investigated under average dwell time switching signals. Time delay under consideration is interval time‐varying in the states. By introducing a proper factor to construct a novel Lyapunov‐Krasovskii function and using average dwell time approach, sufficient conditions for the solvability of this problem, dependent on the upper and lower bounds of time‐varying delay, are obtained in terms of linear matrix inequalities. A numerical example is presented to demonstrate the effectiveness of the developed results. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
11.
This paper deals with the problem of network‐based H∞ control for a class of uncertain stochastic systems with both network‐induced delays and packet dropouts. The networked control system under consideration is represented by a stochastic model, which consists of two successive delay components in the state. The uncertainties are assumed to be time varying and norm bounded. Sufficient conditions for the existence of H∞ controller are proposed to ensure exponentially stable in mean square of the closed‐loop system that also satisfies a prescribed performance. The conditions are expressed in the frame of linear matrix inequalities (LMIs), which can be verified easily by means of standard software. Two practical examples are provided to show the effectiveness of the proposed techniques. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
12.
A. Astolfi 《国际强度与非线性控制杂志
》1997,7(7):727-740
》1997,7(7):727-740
This paper presents a solution to the singular H∞ control problem via state feedback for a class of nonlinear systems. It is shown that the problem of almost disturbance decoupling with stability plays a fundamental role in the solution of the considered problem. We also point out when the singular problem can be reduced to a regular one or solved via standard H∞ technique. We must stress that the solution of the singular problem is obtained without making any approximation of it by means of regular problems. © 1997 John Wiley & Sons, Ltd. 相似文献
13.
This paper deals with delay‐dependent H∞ control for discrete‐time systems with time‐varying delay. A new finite sum inequality is first established to derive a delay‐dependent condition, under which the resulting closed‐loop system via a state feedback is asymptotically stable with a prescribed H∞ noise attenuation level. Then, an iterative algorithm involving convex optimization is proposed to obtain a suboptimal H∞ controller. Finally, two numerical examples are given to show the effectiveness of the proposed method. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
14.
This paper deals with the problem of exponential H∞ filtering for a class of continuous‐time switched linear system with interval time‐varying delay. The time delay under consideration includes two cases: one is that the time delay is differentiable and bounded with a constant delay‐derivative bound, whereas the other is that the time delay is continuous and bounded. Switched linear filters are designed to ensure that the filtering error systems under switching signal with average dwell time are exponentially stable with a prescribed H∞ noise attenuation level. Based on the free‐weighting matrix approach and the average dwell technology, delay‐dependent sufficient conditions for the existence of such a filter are derived and formulated in terms of linear matrix inequalities (LMIs). By solving that corresponding LMIs, the desired filter parameterized matrices and the minimal average dwell time are obtained. Finally, two numerical examples are presented to demonstrate the effectiveness of the developed results. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
15.
This paper investigates the problem of network‐based control for stochastic plants. A new model of stochastic time‐delay systems is presented where both network‐induced delays and packet dropouts are taken into consideration for a sampled‐data network‐based control system. This model consists of two successive delay components in the state, and we solve the network‐based H∞ control problem based on this model by a new stochastic delay system approach. The controller design for the sampled‐data systems is carried out in terms of linear matrix inequalities. Finally, we illustrate the methodology by applying these results to an air vehicle control problem. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
16.
This paper presents an approach to discrete‐time robust H∞ control for a class of nonlinear uncertain systems on the basis of the use of Sum Quadratic Constraints. The approach involves controllers, which include copies of the system nonlinearities in the controller. The nonlinearities being considered are those that satisfy a certain global Lipschitz condition. The linear part of the controller is synthesized using linear robust H∞ control theory, and this leads to a nonlinear controller, which gives an upper bound on the attainable disturbance attenuation level. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
17.
This paper is concerned with the problems of robust stochastic stabilization and robust H∞ control for uncertain discrete‐time stochastic bilinear systems with Markovian switching. The parameter uncertainties are time‐varying norm‐bounded. For the robust stochastic stabilization problem, the purpose is the design of a state feedback controller which ensures the robust stochastic stability of the closed‐loop system irrespective of all admissible parameter uncertainties; while for the robust H∞ control problem, in addition to the robust stochastic stability requirement, a prescribed level of disturbance attenuation is required to be achieved. Sufficient conditions for the solvability of these problems are obtained in terms of linear matrix inequalities (LMIs). When these LMIs are feasible, explicit expressions of the desired state feedback controllers are also given. An illustrative example is provided to show the effectiveness of the proposed approach. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
18.
This paper is concerned with the H∞ filtering design for discrete‐time stochastic time‐delay systems with state dependent noise. A sufficient condition for the existence of H∞ filter design is presented via linear matrix inequalities. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society 相似文献
19.
Qing‐Kui Li Jun Zhao Georgi M. Dimirovski Xiang‐Jie Liu 《Asian journal of control》2009,11(5):517-526
Tracking control for switched linear systems with time‐delay is investigated in this paper. Based on the state‐dependent switching method, sufficient conditions for the solvability of the tracking control problem are given. We use single Lyapunov function technique and a typical hysteresis switching law to design a tracking control law such that the H∞ model reference tracking performance is satisfied. The controller design problem can be solved efficiently by using linear matrices inequalities. Since convex combination techniques are used to derive the delay independent criteria, some subsystems are allowed to be unstable. It is highly desirable that a non‐switched time‐delay system can not earn such property. Simulation example shows the feasibility and validity of the switching control law. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society 相似文献
20.
Distributed reliable H∞ consensus control for a class of multi‐agent systems under switching networks: A topology‐based average dwell time approach 下载免费PDF全文
This paper investigates the problem of distributed reliable H∞ consensus control for high‐order networked agent systems with actuator faults and switching undirected topologies. The Lipschitz nonlinearities, several types of actuator faults, and exogenous disturbances are considered in subsystems. Suppose the communication network of the multi‐agent systems may switch among finite connected graphs. By utilizing the relative state information of neighbors, a new distributed adaptive reliable consensus protocol is presented for actuator failure compensations in individual nodes. Note that the Lyapunov function for error systems may not decrease as the communication network is time‐varying; as a result, the existing distributed adaptive control technique cannot be applied directly. To overcome this difficulty, the topology‐based average dwell time approach is introduced to deal with switching jumps. By applying topology‐based average dwell time approach and Lyapunov theory, the distributed controller design condition is given in terms of LMIs. It is shown that the proposed scheme can guarantee that the reliable H∞ consensus problem is solvable in the presence actuator faults and external disturbance. Finally, two numerical examples are given the effectiveness of the proposed theoretical results. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献