首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we present an extended state observer–based robust dynamic surface trajectory tracking controller for a quadrotor unmanned aerial vehicle subject to parametric uncertainties and external disturbances. First, the original cascaded dynamics of a quadrotor unmanned aerial vehicle is formulated in a strict form with lumped disturbances to facilitate the backstepping design. Second, based on the separate outer‐ and inner‐loop control methodologies, the extended state observers are constructed to online estimate the unmeasurable velocity states and lumped disturbances existed in translational and rotational dynamics, respectively. Third, to overcome the problem of “explosion of complexity” inherent in backstepping control, the technique of dynamic surface control is utilized for trajectory tracking and attitude stabilization, and with the velocity and disturbance estimates incorporated into the dynamic surface control, a robust dynamic surface flight controller that guarantees asymptotic tracking in the presence of lumped disturbances is synthesized. In addition, the stability analysis is given, showing that the present robust controller can ensure the ultimate boundedness of all signals in the closed‐loop system and make the tracking errors arbitrarily small. Finally, comparisons and extensive simulations under different flight scenarios are performed to validate the effectiveness and superiority of the proposed scheme in accurate tracking performance and enhanced antidisturbance capability.  相似文献   

2.
This paper exploits a nonlinear robust adaptive hierarchical sliding mode control approach for quadrotors subject to thrust constraint and inertial parameter uncertainty to accomplish trajectory tracking missions. Because of under‐actuated nature of the quadrotor, a hierarchical control strategy is available; and position and attitude loop controllers are synthesized according to adaptive sliding mode control projects, where adaptive updates with projection algorithm are developed to ensure bounded estimations for uncertain inertial parameters. Further, during the position loop controller development, an auxiliary dynamic system is introduced, and selection criteria for controller parameters are established to maintain the thrust constraint and to ensure the non‐singular requirement of command attitude extraction. It has demonstrated that, the asymptotically stable trajectory tracking can be realized by the asymptotically stable cascaded closed‐loop system and auxiliary dynamic system. Simulations validate and highlight the proposed control approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The problem of finite‐time tracking control is studied for uncertain nonlinear mechanical systems. To achieve finite‐time convergence of tracking errors, a simple linear sliding surface based on polynomial reference trajectory is proposed to enable the trajectory tracking errors to converge to zero in a finite time, which is assigned arbitrarily in advance. The sliding mode control technique is employed in the development of the finite‐time controller to guarantee the excellent robustness of the closed‐loop system. The proposed sliding mode scheme eliminates the reaching phase problem, so that the closed‐loop system always holds the invariance property to parametric uncertainties and external disturbances. Lyapunov stability analysis is performed to show the global finite‐time convergence of the tracking errors. A numerical example of a rigid spacecraft attitude tracking problem demonstrates the effectiveness of the proposed controller.  相似文献   

4.
In this paper, a novel robust sliding mode learning control scheme is developed for a class of non‐minimum phase nonlinear systems with uncertain dynamics. It is shown that the proposed sliding mode learning controller, designed based on the most recent information of the stability status of the closed‐loop system, is capable of adjusting the control signal to drive the sliding variable to reach the sliding surface in finite time and remain on it thereafter. The closed‐loop dynamics including both observable and non‐observable ones are then guaranteed to asymptotically converge to zero in the sliding mode. The developed learning control method possesses many appealing features including chattering‐free characteristic, strong robustness with respect to uncertainties. More importantly, the prior information of the bounds of uncertainties is no longer required in designing the controller. Numerical examples are presented in comparison with the conventional sliding mode control and backstepping control approaches to illustrate the effectiveness of the proposed control methodology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, the finite‐time tracking problem is investigated for a nonholonomic wheeled mobile robot in a fifth‐order dynamic model. We consider the whole tracking error system as a cascaded system. Two continuous global finite‐time stabilizing controllers are designed for a second‐order subsystem and a third‐order subsystem respectively. Then finite‐time stability results for cascaded systems are employed to prove that the closed‐loop system satisfies the finite‐time stability. Thus the closed‐loop system can track the reference trajectory in finite‐time when the desired velocities satisfy some conditions. In particular, we discuss the control gains selection for the third‐order finite‐time controller and give sufficient conditions by using Lyapunov and backstepping techniques. Simulation results demonstrate the effectiveness of our method. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

6.
In this paper, an output‐feedback trajectory tracking controller for quadrotors is presented by integrating a model‐assisted extended state observer (ESO) with dynamic surface control. The quadrotor dynamics are described by translational and rotational loops with lumped disturbances to promote the hierarchical control design. Then, by exploiting the structural property of the quadrotor, a model information–assisted high‐order ESO that relies only on position measurements is designed to estimate not only the unmeasurable states but also the lumped disturbances in the rotational loop. In addition, to account for the problem of “explosion of complexity” inherent in hierarchical control, the output feedback–based trajectory tracking and attitude stabilization laws are respectively synthesized by utilizing dynamic surface control and the corresponding estimated signals provided by the ESO. The stability analysis is given, showing that the output‐feedback trajectory tracking controller can ensure the ultimate boundedness of all signals in the closed‐loop system and make the tracking errors arbitrarily small. Finally, flight simulations with respect to an 8‐shaped trajectory command are performed to verify the effectiveness of the proposed scheme in obtaining the stable and accurate trajectory tracking using position measurements only.  相似文献   

7.
Small unmanned aerial vehicles (UAVs) are becoming popular among researchers and vital platforms for several autonomous mission systems. In this paper, we present the design and development of a miniature autonomous rotorcraft weighing less than 700 g and capable of waypoint navigation, trajectory tracking, visual navigation, precise hovering, and automatic takeoff and landing. In an effort to make advanced autonomous behaviors available to mini‐ and microrotorcraft, an embedded and inexpensive autopilot was developed. To compensate for the weaknesses of the low‐cost equipment, we put our efforts into designing a reliable model‐based nonlinear controller that uses an inner‐loop outer‐loop control scheme. The developed flight controller considers the system's nonlinearities, guarantees the stability of the closed‐loop system, and results in a practical controller that is easy to implement and to tune. In addition to controller design and stability analysis, the paper provides information about the overall control architecture and the UAV system integration, including guidance laws, navigation algorithms, control system implementation, and autopilot hardware. The guidance, navigation, and control (GN&C) algorithms were implemented on a miniature quadrotor UAV that has undergone an extensive program of flight tests, resulting in various flight behaviors under autonomous control from takeoff to landing. Experimental results that demonstrate the operation of the GN&C algorithms and the capabilities of our autonomous micro air vehicle are presented. © 2009 Wiley Periodicals, Inc.  相似文献   

8.
A system is considered underactuated if the number of the actuator inputs is less than the number of degrees of freedom for the system. Sliding mode control for underactuated systems has been shown to be an effective way to achieve system stabilization. It involves exponentially stable sliding surfaces so that when the closed‐loop system trajectory reaches the surface, it moves along the surface while converging to the origin. In this paper, a general framework that provides sufficient conditions for asymptotic stabilization of underactuated nonlinear systems using sliding mode control in the presence of system uncertainties is presented. Specifically, it is shown that the closed‐loop system trajectories reach the sliding surface in finite time, and a constructive methodology to determine exponential stability of the closed‐loop system on the sliding surface is developed, which ensures asymptotic stability of the overall closed‐loop system. Furthermore, the aforementioned framework provides the basis to determine an estimate of the domain of attraction for the closed‐loop system with uncertainties. Finally, the results developed in the paper are experimentally validated using a linear inverted pendulum testbed to show a good match between the actual domain of attraction of the upward equilibrium state of the pendulum and its analytical estimate.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
研究无人机飞行稳定性控制问题,由于无人机飞行控制系统存在时变外部干扰,飞行过程中升阴比变化激烈,控制稳定性难度较大。利用滑模控制良好的鲁棒能力提出一种神经网络的鲁棒飞行控制方法。因神经网络有良好非线性逼近能力,可对无人机飞行系统中的不确定进行在线逼近,并将神经网络权值误差引入到权值的自适应律中用以改善系统的动态性能。利用神经网络的组合,设计无人机鲁棒滑模飞行控制器。控制器分为两部分,一部分是等效控制器,另一部分是滑模控制器,能有效减小系统的跟踪误差。最后将所设计的鲁棒滑模控制对无人机飞行姿态控制进行仿真。仿真结果表明,新方法能提高无人机的鲁棒飞行控制能力且能实现无人机姿态的精确跟踪和稳定性控制。  相似文献   

10.
We present an asymptotic tracking controller for an underactuated quadrotor unmanned aerial vehicle using the sliding mode control method and immersion and invariance based adaptive control strategy in this paper. The control system is divided into two loops: the inner‐loop for the attitude control and the outer‐loop for the position. The sliding mode control technology is applied in the inner‐loop to compensate the unmatched nonlinear disturbances, and the immersion and invariance approach is chosen for the outer‐loop to address the parametric uncertainties. The asymptotic tracking of the position and the yaw motion is proven with the Lyapunov based stability analysis and LaSalle's invariance theorem. Real‐time experiment results performed on a hardware‐in‐the‐loop‐simulation testbed are presented to validate the good control performance of the proposed scheme. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A passivity‐based sliding mode control for a class of second‐order nonlinear systems with matched disturbances is proposed in this paper. Firstly, a nonlinear sliding surface is designed using feedback passification, in which the passivity is employed to guarantee the closed‐loop system's stability. The passivity‐based controller comprising a discontinuous term guarantees globally asymptotical convergence to the sliding surface. A sliding mode‐based control law that satisfies the reaching and sliding condition is also developed. Moreover, the passivity‐based sliding mode observer is also developed to effectively estimate the system states. Compared with conventional sliding mode control, the proposed control scheme has a shorter reaching time; and hence, the system performance is less affected by disturbances, thus eliminating the need to increase the control input gain. Finally, simulation results demonstrate the validity of the proposed method.  相似文献   

12.
This work addresses the aerodynamic modeling and near‐hover‐flight control design for an unconventional aerial robot of the tandem ducted fan configuration, which is intended to be prototypical of a flight service vehicle. The main model elements of this novel unmanned vehicle, which exhibit highly nonlinear and unstable open‐loop modes, are presented. A frequency‐domain controllability analysis concerning the plant's behavior around the hovering flight condition is then adopted to determine the expected control performance, which is of important practical significance to controllability improvement through vehicle design changes. A robust controller that stabilizes the unmanned vehicle under wind disturbances is designed using a newly developed nonsmooth optimization algorithm, which rigorously and efficiently tunes the arbitrarily predefined structured controller against multiple control requirements. A successive two‐loop architecture is employed in the designed controller. In this architecture, the inner loop provides stability augmentation and decoupling, and the outer loop guarantees the desired velocity tracking performance. Simulation results under stochastic wind gusts are presented to verify the performance of the proposed controllers. Preliminary flight tests are also carried out to demonstrate the performance of the system.  相似文献   

13.
A unified solution is presented to the tracking control problem of Euler–Lagrange systems with finite‐time convergence. A reconstruction module is designed to estimate the overall of unmodeled dynamics, disturbance, actuator misalignment, and multiple actuator faults. That reconstruction is accomplished in finite time with zero error. A nonsingular terminal sliding mode controller is then synthesized, and the resultant closed‐loop system is also shown to be finite‐time stable with the reference trajectory followed in finite time. Unlike most sliding mode control methods to handle system uncertainties, the designed control has less conservativeness and stronger fault tolerant capability. A rigid spacecraft system is used to demonstrate the effectiveness and potential of the proposed scheme. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a novel scheme for identification and control of an electro‐hydraulic system using recurrent neural networks. The proposed neural network has the nonlinear block control form structure. A sliding‐mode control technique is applied then to design a discontinuous controller, which is able to track a force reference trajectory. Due to the presence of an unmodelled dynamics, the standard sliding‐mode controller produces oscillations (or ‘chattering’) in the closed‐loop system. The second‐order sliding mode is used to eliminate the undesired chattering effect. Simulations are presented to illustrate the results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
马敏  许中冲  常辰飞  薛倩 《测控技术》2016,35(10):42-45
为提高四旋翼无人机的飞行稳定性、无人飞行器控制系统的鲁棒性和控制精度,以建立的四旋翼无人机飞行控制系统模型为基础,采用现代控制理论与传统控制论相结合的方法,针对姿态角速率、姿态角分别设计内环LQR(线性二次型调节器)控制器,及外环PID控制的双回路闲环控制器.充分利用PID控制器易于掌握且对模型要求精度低、LQR控制器能改善内回路的动态特性和稳态性能的特点,完成四旋翼无人机的飞行控制.通过实验遴选该双闭环控制器相关参数并进行优化,实验结果表明所设计的双回路控制器控制性能指标良好.  相似文献   

16.
In this paper, a control scheme that combines a kinematic controller and a sliding mode dynamic controller with external disturbances is proposed for an automatic guided vehicle to track a desired trajectory with a specified constant velocity. It provides a method of taking into account specific mobile robot dynamics to convert desired velocity control inputs into torques for the actual mobile robot. First, velocity control inputs are designed for the kinematic controller to make the tracking error vector asymptotically stable. Then, a sliding mode dynamic controller is designed such that the mobile robot’s velocities converge to the velocity control inputs. The control law is obtained based on the backstepping technique. System stability is proved using the Lyapunov stability theory. In addition, a scheme for measuring the errors using a USB camera is described. The simulation and experimental results are presented to illustrate the effectiveness of the proposed controller.  相似文献   

17.
Multiple loop multiple time scale sliding mode control technique based on dynamic sliding manifold is developed and applied to aeronautical and space vehicle control. Minimum and non-minimum phase output tracking problems for aeronautical and space vehicles are addressed in dynamic sliding manifold. Numerical examples of the flight controller design for controlling minimum and non-minimum phase manoeuvres of an F-16 jet fighter are presented. An example of an attitude controller design for the X-33 technology demonstration reusable launch vehicle using sliding mode control based on dynamic sliding manifold is also considered. Numerical simulations illustrate the effectiveness of the dynamic sliding manifold technique.  相似文献   

18.
针对全向移动机器人轨迹跟踪控制中存在未知轮子打滑干扰问题,设计自抗扰反步控制器.首先,建立存在轮子打滑扰动的全向移动机器人的运动学模型;然后,融合自抗扰控制技术与反步控制技术,设计基于全向移动机器人运动学模型的轨迹跟踪控制器,该控制器分别从纵向控制、横向控制及姿态控制上对打滑干扰进行实时估计与补偿;最后,利用Lyapunov定理分析闭环系统的稳定性并通过仿真实验验证了所提出控制算法的有效性和鲁棒性.  相似文献   

19.
High‐order sliding mode control techniques are proposed for uncertain nonlinear SISO systems with bounded uncertainties based on two different terminal sliding mode approaches. The tracking error of the output converges to zero in finite time by designing a terminal sliding mode controller. In addition, the adaptive control method is employed to identify bounded uncertainties for eliminating the requirement of boundaries needed in the conventional design. The controllers are derived using Lyapunov theory, so the stability of the closed‐loop system is guaranteed. In the first technique, the developed procedure removes the reaching phase of sliding mode and realizes global robustness. The proposed algorithms ensure establishment of high‐order sliding mode. An illustrative example of a car control demonstrates effectiveness of the presented designs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
This paper deals with the trajectory tracking problem of a six‐degree of freedom (6‐DOF) quadrotor unmanned aerial vehicle (UAV). The problem of simplified kinematics based on Euler angles is analyzed and the modified Rodrigues parameters (MRPs) technique is introduced to model the rotational dynamics of the rigid body. A nonlinear system error model is established based on the trajectory tracking problem, and, due to the coupling property between the translational and rotational dynamics, we divide the complete closed‐loop system into two reduced‐order subsystems and a coupling term. The Rodrigues theorem is applied to analyze the internal connections between the coupling term and MRPs. Therefore, the global stability conclusions, by which the trajectory tracking controller of the quadrotor UAV could be designed based on the subsystem directly in future works, are proved based on several assumptions of the subsystems. Thereafter, the controllers, using the backstepping approach and nonlinear disturbance observer/sliding mode control approach, which stabilize the quadrotor UAV globally ‐exponentially and globally uniformly bounded, are proposed based on the stability theorem proofs mentioned above. Numerical simulations are provided to show that the theoretical conclusions and the controller proposed are effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号