首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inflammation is a common cause of many acute and chronic inflammatory diseases. A major limitation of existing anti‐inflammatory therapeutics is that they cannot simultaneously regulate pro‐inflammatory cytokine production, oxidative stress, and recruitment of neutrophils and macrophages. To overcome this limitation, nanoparticles (NPs) with multiple pharmacological activities are synthesized, using a chemically modified cyclic oligosaccharide. The manufacture of this type of bioactive, saccharide material‐based NPs (defined as LCD NP) is straightforward, cost‐effective, and scalable. Functionally, LCD NP effectively inhibits inflammatory response, oxidative stress, and cell migration for both neutrophils and macrophages, two major players of inflammation. Therapeutically, LCD NP shows desirable efficacies for the treatment of acute and chronic inflammatory diseases in mouse models of peritonitis, acute lung injury, and atherosclerosis. Mechanistically, the therapeutic benefits of LCD NP are achieved by inhibiting neutrophil‐mediated inflammatory macrophage recruitment and by preventing subsequent pro‐inflammatory events. In addition, LCD NP shows good safety profile in a mouse model. Thus, LCD NP can serve as an effective anti‐inflammatory nanotherapy for the treatment of inflammatory diseases mainly associated with neutrophil and macrophage infiltration.  相似文献   

2.
Extracellular vesicles (EVs) have recently gained significant attention as important mediators of intercellular communication, potential drug carriers, and disease biomarkers. These natural cell‐derived nanoparticles are postulated to be biocompatible, stable under physiological conditions, and to show reduced immunogenicity as compared to other synthetic nanoparticles. Although initial clinical trials are ongoing, the use of EVs for therapeutic applications may be limited due to undesired off‐target activity and potential “dilution effects” upon systemic administration which may affect their ability to reach their target tissues. To fully exploit their therapeutic potential, EVs are embedded into implantable biomaterials designed to achieve local delivery of therapeutics taking advantage of enzyme prodrug therapy (EPT). In this first application of EVs for an EPT approach, EVs are used as smart carriers for stabilizing enzymes in a hydrogel for local controlled conversion of benign prodrugs to active antiinflammatory compounds. It is shown that the natural EVs' antiinflammatory potential is comparable or superior to synthetic carriers, in particular upon repeated long‐term incubations and in different macrophage models of inflammation. Moreover, density‐dependent color scanning electron microscopy imaging of EVs in a hydrogel is presented herein, an impactful tool for further understanding EVs in biological settings.  相似文献   

3.
Interleukin 1 beta (IL‐1β)‐dependent inflammatory disorders, such as rheumatoid arthritis and psoriasis, pose a serious medical burden worldwide, where patients face a lifetime of illness and treatment. Organogold compounds have been used since the 1930s to treat rheumatic and other IL‐1β‐dependent diseases and, though their mechanisms of action are still unclear, there is evidence that gold interferes with the transmission of inflammatory signalling. Here we show for the first time that citrate‐stabilized gold nanoparticles, in a size dependent manner, specifically downregulate cellular responses induced by IL‐1β both in vitro and in vivo. Our results indicate that the anti‐inflammatory activity of gold nanoparticles is associated with an extracellular interaction with IL‐1β, thus opening potentially novel options for further therapeutic applications.  相似文献   

4.
Recent studies indicate that mineral nanoparticles (NPs) form spontaneously in human body fluids. These biological NPs represent mineral precursors that are associated with ectopic calcifications seen in various human diseases. However, the parameters that control the formation of mineral NPs and their possible effects on human cells remain poorly understood. Here a nanomaterial approach to study the formation of biomimetic calcium phosphate NPs comparable to their physiological counterparts is described. Particle sizing using dynamic light scattering reveals that serum and ion concentrations within the physiological range yield NPs below 100 nm in diameter. While the particles are phagocytosed by macrophages in a size‐independent manner, only large particles or NP aggregates in the micrometer range induce cellular responses that include production of mitochondrial reactive oxygen species, caspase‐1 activation, and secretion of interleukin‐1β (IL‐1β). A comprehensive proteomic analysis reveals that the particle‐bound proteins are similar in terms of their identity and number, regardless of particle size, suggesting that protein adsorption is independent of particle size and curvature. In conclusion, the conditions underlying the formation of mineralo‐protein particles are similar to the ones that form in vivo. While mineral NPs do not activate immune cells, they may become pro‐inflammatory and contribute to pathological processes once they aggregate and form larger mineral particles.  相似文献   

5.
The immunological response of macrophages to physically produced pure Au and Ag nanoparticles (NPs) (in three different sizes) is investigated in vitro. The treatment of either type of NP at ≥10 ppm dramatically decreases the population and increases the size of the macrophages. Both NPs enter the cells but only AuNPs (especially those with smaller diamter) up‐regulate the expressions of proinflammatory genes interlukin‐1 (IL‐1), interlukin‐6 (IL‐6), and tumor necrosis factor (TNF‐α). Transmission electron microscopy images show that AuNPs and AgNPs are both trapped in vesicles in the cytoplasma, but only AuNPs are organized into a circular pattern. It is speculated that part of the negatively charged AuNPs might adsorb serum protein and enter cells via the more complicated endocytotic pathway, which results in higher cytotoxicity and immunological response of AuNPs as compared to AgNPS.  相似文献   

6.
The recent ban of titanium dioxide (TiO2) as a food additive (E171) in France intensified the controversy on safety of foodborne‐TiO2 nanoparticles (NPs). This study determines the biological effects of TiO2 NPs and TiO2 (E171) in obese and non‐obese mice. Oral consumption (0.1 wt% in diet for 8 weeks) of TiO2 (E171, 112 nm) and TiO2 NPs (33 nm) does not cause severe toxicity in mice, but significantly alters composition of gut microbiota, for example, increased abundance of Firmicutes phylum and decreased abundance of Bacteroidetes phylum and Bifidobacterium and Lactobacillus genera, which are accompanied by decreased cecal levels of short‐chain fatty acids. Both TiO2 (E171) and TiO2 NPs increase abundance of pro‐inflammatory immune cells and cytokines in the colonic mucosa, indicating an inflammatory state. Importantly, TiO2 NPs cause stronger colonic inflammation than TiO2 (E171), and obese mice are more susceptible to the effects. A microbiota transplant study demonstrates that altered fecal microbiota by TiO2 NPs directly mediate inflammatory responses in the mouse colon. Furthermore, proteomic analysis shows that TiO2 NPs cause more alterations in multiple pathways in the liver and colon of obese mice than non‐obese mice. This study provides important information on the health effects of foodborne inorganic nanoparticles.  相似文献   

7.
The inflammatory effects of carbon nanoparticles (NPs) are highly disputed. Here it is demonstrated that endotoxin‐free preparations of raw carbon nanotubes (CNTs) are very limited in their capacity to promote inflammatory responses in vitro, as well as in vivo. Upon purification and selective oxidation of raw CNTs, a higher dispersibility is achieved in physiological solutions, but this process also enhances their inflammatory activity. In synergy with toll‐like receptor (TLR) ligands, CNTs promote NLRP3 inflammasome activation and it is shown for the first time that this property extends to spherical carbon nano‐onions (CNOs) of 6 nm in size. In contrast, the benzoic acid functionalization of purified CNTs and CNOs leads to significantly attenuated inflammatory properties. This is evidenced by a reduced secretion of the inflammatory cytokine IL‐1β, and a pronounced decrease in the recruitment of neutrophils and monocytes following injection into mice. Collectively, these results reveal that the inflammatory properties of carbon NPs are highly dependent on their physicochemical characteristics and crucially, that chemical surface functionalization allows significant moderation of these properties.  相似文献   

8.
Extracellular vesicles (EVs) are emerging as a potential diagnostic test for cancer. Owing to the recent advances in microfluidics, on‐chip EV isolation is showing promise with respect to improved recovery rates, smaller necessary sample volumes, and shorter processing times than ultracentrifugation. Immunoaffinity‐based microfluidic EV isolation using anti‐CD63 is widely used; however, anti‐CD63 is not specific to cancer‐EVs, and some cancers secrete EVs with low expression of CD63. Alternatively, phosphatidylserine (PS), usually expressed in the inner leaflet of the lipid bilayer of the cells, is shown to be expressed on the outer surface of cancer‐associated EVs. A new exosome isolation microfluidic device (newExoChip), conjugated with a PS‐specific protein, to isolate cancer‐associated exosomes from plasma, is presented. The device achieves 90% capture efficiency for cancer cell exosomes compared to 38% for healthy exosomes and isolates 35% more A549‐derived exosomes than an anti‐CD63‐conjugated device. Immobilized exosomes are then easily released using Ca2+ chelation. The recovered exosomes from clinical samples are characterized by electron microscopy and western‐blot analysis, revealing exosomal shapes and exosomal protein expressions. The newExoChip facilitates the isolation of a specific subset of exosomes, allowing the exploration of the undiscovered roles of exosomes in cancer progression and metastasis.  相似文献   

9.
Malignant tumors develop multiple mechanisms to impair and escape from antitumor immune responses, of which tumor‐associated macrophages that often show immunosuppressive phenotype (M2), play a critical role in tumor‐induced immunosuppression. Therefore, strategies that can reverse M2 phenotype and even enhance immune‐stimulation function of macrophage would benefit tumor immunotherapy. In this paper, self‐assembled glyco‐nanoparticles (glyco‐NPs), as artificial glycocalyx, have been found to be able to successfully induce the polarization of mouse primary peritoneal macrophages from M2 to inflammatory type (M1). The polarization change was evidenced by the decreased expression of cell surface signaling molecules CD206 and CD23, and the increased expression of CD86. Meanwhile, secretion of cytokines supported this polarization change as well. More importantly, this phenomenon is observed not only in vitro, but also in vivo. As far as we known, this is the first report about macrophage polarization being induced by synthetic nanomaterials. Moreover, preparation, characterization of these glyco‐NPs and their interaction with the macrophages are also demonstrated.  相似文献   

10.
Although tremendous efforts have been made on targeted drug delivery systems, current therapy outcomes still suffer from low circulating time and limited targeting efficiency. The integration of cell‐mediated drug delivery and theranostic nanomedicine can potentially improve cancer management in both therapeutic and diagnostic applications. By taking advantage of innate immune cell's ability to target tumor cells, the authors develop a novel drug delivery system by using macrophages as both nanoparticle (NP) carriers and navigators to achieve cancer‐specific drug delivery. Theranostic NPs are fabricated from a unique polymer, biodegradable photoluminescent poly (lactic acid) (BPLP‐PLA), which possesses strong fluorescence, biodegradability, and cytocompatibility. In order to minimize the toxicity of cancer drugs to immune cells and other healthy cells, an anti‐BRAF V600E mutant melanoma specific drug (PLX4032) is loaded into BPLP‐PLA nanoparticles. Muramyl tripeptide is also conjugated onto the nanoparticles to improve the nanoparticle loading efficiency. The resulting nanoparticles are internalized within macrophages, which are tracked via the intrinsic fluorescence of BPLP‐PLA. Macrophages carrying nanoparticles deliver drugs to melanoma cells via cell–cell binding. Pharmacological studies also indicate that the PLX4032 loaded nanoparticles effectively kill melanoma cells. The “self‐powered” immune cell‐mediated drug delivery system demonstrates a potentially significant advancement in targeted theranostic cancer nanotechnologies.  相似文献   

11.
Nanotechnology is showing promise in many medical applications such as drug delivery and hyperthermia. Nanoparticles administered to the respiratory tract cause local reactions and cross the blood–air barrier, thereby providing a means for easy systemic administration but also a potential source of toxicity. Little is known about how these effects are influenced by preexisting airway diseases such as asthma. Here, BALB/c mice are treated according to the ovalbumin (OVA) asthma protocol to promote allergic airway inflammation. Dispersions of polyethylene‐glycol‐coated (PEGylated) and citrate/tannic‐acid‐coated (citrated) 5 nm gold nanoparticles are applied intranasally to asthma and control groups, and (i) airway resistance and (ii) local tissue effects are measured as primary endpoints. Further, nanoparticle uptake into extrapulmonary organs is quantified by inductively coupled plasma mass spectrometry. The asthmatic precondition increases nanoparticle uptake. Moreover, systemic uptake is higher for PEGylated gold nanoparticles compared to citrated nanoparticles. Nanoparticles inhibit both inflammatory infiltrates and airway hyperreactivity, especially citrated gold nanoparticles. Although the antiinflammatory effects of gold nanoparticles might be of therapeutic benefit, systemic uptake and consequent adverse effects must be considered when designing and testing nanoparticle‐based asthma therapies.  相似文献   

12.
While it is well known that there are interspecies differences in Ag sensitivity, differences in the cytotoxic responses of mammalian cells to silver nanoparticles (Ag NPs) are also observed. In order to explore these response outcomes, six cell lines, including epithelial cells (Caco‐2, NHBE, RLE‐6TN, and BEAS‐2B) and macrophages (RAW 264.7 and THP‐1) of human and rodent origin, are exposed to 20 nm citrate‐ and PVP‐coated Ag NPs with Au cores, as well as 20 nm citrate‐coated particles without cores. An MTS assay shows that while Caco‐2 and NHBE cells are resistant to particles over a 0.1–50 μg mL?1 dose range, RAW 264.7, THP‐1, RLE‐6TN, and BEAS‐2B cells are more susceptible. While there are small differences in dissolution rates, there are no major differences in the cytotoxic potential of the different particles. However, differences in anti‐oxidant defense and metallothionein expression among different cell types are observed, which can partially explain differential Ag NP sensitivity. So, it is important to consider these differences in understanding the potential heterogeneous effects of nano Ag on mammalian biological systems.  相似文献   

13.
Targeting programmed cell death protein 1 (PD‐1)/programmed death ligand 1 (PD‐L1) immunologic checkpoint blockade with monoclonal antibodies has achieved recent clinical success in antitumor therapy. However, therapeutic antibodies exhibit several issues such as limited tumor penetration, immunogenicity, and costly production. Here, Bristol‐Myers Squibb nanoparticles (NPs) are prepared using a reprecipitation method. The NPs have advantages including passive targeting, hydrophilic and nontoxic features, and a 100% drug loading rate. BMS‐202 is a small‐molecule inhibitor of the PD‐1/PD‐L1 interaction that is developed by BMS. Transfer of BMS‐202 NPs to 4T1 tumor‐bearing mice results in markedly slower tumor growth to the same degree as treatment with anti‐PD‐L1 monoclonal antibody (α‐PD‐L1). Consistently, the combination of Ce6 NPs with BMS‐202 NPs or α‐PD‐L1 in parallel shows more efficacious antitumor and antimetastatic effects, accompanied by enhanced dendritic cell maturation and infiltration of antigen‐specific T cells into the tumors. Thus, inhibition rates of primary and distant tumors reach >90%. In addition, BMS‐202 NPs are able to attack spreading metastatic lung tumors and offer immune‐memory protection to prevent tumor relapse. These results indicate that BMS‐202 NPs possess effects similar to α‐PD‐L1 in the therapies of 4T1 tumors. Therefore, this work reveals the possibility of replacing the antibody used in immunotherapy for tumors with BMS‐202 NPs.  相似文献   

14.
Since more than 30% of consumer products that include engineered nanomaterials contain nano‐Ag, the safety of this material is of considerable public concern. In this study, Ag nanoparticles (NPs) are used to demonstrate that 20 nm polyvinylpyrrolidone (PVP or P) and citrate (C)‐coated Ag NPs induce more cellular toxicity and oxidative stress than larger (110 nm) particles due to a higher rate of dissolution and Ag bioavailability. Moreover, there is also a higher propensity for citrate 20 nm (C20) nanoparticles to generate acute neutrophilic inflammation in the lung and to produce chemokines compared to C110. P110 has less cytotoxic effects than C110, likely due to the ability of PVP to complex released Ag+. In contrast to the more intense acute pulmonary effects of C20, C110 induces mild pulmonary fibrosis at day 21, likely as a result of slow but persistent Ag+ release leading to a sub‐chronic injury response. Interestingly, the released metallic Ag is incorporated into the collagen fibers depositing around airways and the lung interstitium. Taken together, these results demonstrate that size and surface coating affect the cellular toxicity of Ag NPs as well as their acute versus sub‐chronic lung injury potential.  相似文献   

15.
Remodeling of tumor microenvironments enables enhanced delivery of nanoparticles (NPs). This study shows that direct priming of a tumor tissue using photosensitization rapidly activates neutrophil infiltration that mediates delivery of nanotherapeutics into the tumor. A drug delivery platform is comprised of NPs coated with anti‐CD11b antibodies (Abs) that target activated neutrophils. Intravital microscopy demonstrates that the movement of anti‐CD11b Abs‐decorated NPs (NPs‐CD11b) into the tumor is mediated by neutrophil infiltration induced by photosensitization (PS) because the systemic depletion of neutrophils completely abolishes the nanoparticle tumor deposition. The neutrophil uptake of NPs does not alter neutrophil activation and transmigration. For cancer therapy in mice, tumor PS and photothermal therapy of anti‐CD11b Abs‐linked gold nanorods (GNRs‐CD11b) are combined to treat the carcinoma tumor. The result indicates that neutrophil tumor infiltration enhances nanoparticle cancer therapy. The findings reveal that promoting tumor infiltration of neutrophils by manipulating tumor microenvironments could be a novel strategy to actively deliver nanotherapeutics in cancer therapies.  相似文献   

16.
Nanotechnology is an emerging field of science that applies particles between 1 and 100 nm in size for a range of practical uses. Nano‐technological discoveries have opened novel applications in biotechnology and agriculture. Many reactions involving nanoparticles (NPs) are more efficient compared to those of their respective bulk materials. NPs obtained from plant material, denoted as biogenic or phytosynthesised NPs, are preferred over chemically synthesised NPs due to their low toxicity, rapid reactions and cost‐effective production. NPs impart both positive and negative impacts on plant growth and development. NPs exhibit their unique actions as a function of their size, reactivity, surface area and concentration. An insight into NP biosynthesis and translocation within the plant system will shed some light on the roles and mechanisms of NP‐mediated regulation of plant metabolism. This review is a step towards that goal.Inspec keywords: nanofabrication, nanoparticles, nanobiotechnology, particle size, reviews, botany, biochemistryOther keywords: chemically synthesised NPs, low toxicity, rapid reactions, cost‐effective production, positive impacts, plant growth, translocation, plant system, plant metabolism, nanotechnological discoveries, biotechnology, agriculture, plant material, biogenic NPs, phytosynthesised NPs, bulk materials, nanoparticles, biosynthesis, surface area, review, size 1.0 nm to 100.0 nm  相似文献   

17.
Chronic wounds are characterized by impaired healing and uncontrolled inflammation, which compromise the protective role of the immune system and may lead to bacterial infection. Upregulation of miR‐223 microRNAs (miRNAs) shows driving of the polarization of macrophages toward the anti‐inflammatory (M2) phenotype, which could aid in the acceleration of wound healing. However, local‐targeted delivery of microRNAs is still challenging, due to their low stability. Here, adhesive hydrogels containing miR‐223 5p mimic (miR‐223*) loaded hyaluronic acid nanoparticles are developed to control tissue macrophages polarization during wound healing processes. In vitro upregulation of miR‐223* in J774A.1 macrophages demonstrates increased expression of the anti‐inflammatory gene Arg‐1 and a decrease in proinflammatory markers, including TNF‐α, IL‐1β, and IL‐6. The therapeutic potential of miR‐223* loaded adhesive hydrogels is also evaluated in vivo. The adhesive hydrogels could adhere to and cover the wounds during the healing process in an acute excisional wound model. Histological evaluation and quantitative polymerase chain reaction (qPCR) analysis show that local delivery of miR‐223* efficiently promotes the formation of uniform vascularized skin at the wound site, which is mainly due to the polarization of macrophages to the M2 phenotype. Overall, this study demonstrates the potential of nanoparticle‐laden hydrogels conveying miRNA‐223* to accelerate wound healing.  相似文献   

18.
Ultrasmall nanoparticles (NPs) are a promising platform for the diagnosis and therapy of cancer, but the particles in sizes as small as several nanometers have an ability to translocate across biological barriers, which may bring unpredictable health risks. Therefore, it is essential to develop workable cell-based tools that can deliver ultrasmall NPs to the tumor in a safer manner. Here, this work uses macrophages as a shuttle to deliver sub-5 nm PEGylated gold (Au) NPs to tumors actively or passively, while reducing the accumulation of Au NPs in the brain. This work demonstrates that sub-5 nm Au NPs can be rapidly exocytosed from live macrophages, reaching 45.6% within 24 h, resulting in a labile Au NP-macrophage system that may release free Au NPs into the blood circulation in vivo. To overcome this shortcoming, two straightforward methods are used to engineer macrophages to obtain “half-dead” and “dead” macrophages. Although the efficiency of engineered macrophages for delivering sub-5 nm Au NPs to tumors is 2.2–3.8% lower than that of free Au NPs via the passive enhanced permeability and retention effect, this safe-by-design approach can dramatically reduce the accumulation of Au NPs in the brain by more than one order of magnitude. These promising approaches offer an opportunity to expand the immune cell- or stem cell-mediated delivery of ultrasmall NPs for the diagnosis and therapy of diseases in a safer way in the future.  相似文献   

19.
The valence and oxygen defect properties of cerium oxide nanoparticles (nanoceria) suggest that they may act as auto‐regenerative free radical scavengers. Overproduction of the free radical nitric oxide (NO) by the enzyme inducible nitric oxide synthase (iNOS) has been implicated as a critical mediator of inflammation. NO is correlated with disease activity and contributes to tissue destruction. The ability of nanoceria to scavenge free radicals, or reactive oxygen species (ROS), and inhibit inflammatory mediator production in J774A.1 murine macrophages is investigated. Cells internalize nanoceria, the treatment is nontoxic, and oxidative stress and pro‐inflammatory iNOS protein expression are abated with stimulation. In vivo studies show nanoceria deposition in mouse tissues with no pathogenicity. Taken together, it is suggested that cerium oxide nanoparticles are well tolerated in mice and are incorporated into cellular tissues. Furthermore, nanoceria may have the potential to reduce ROS production in states of inflammation and therefore serve as a novel therapy for chronic inflammation.  相似文献   

20.
Extracellular vesicles (EVs) are lipid bilayer nanovesicles released from living or apoptotic cells that can transport DNA, RNA, protein, and lipid cargo. EVs play critical roles in cell–cell communication and tissue homeostasis, and have numerous therapeutic uses including serving as carriers for nanodrug delivery. There are multiple ways to load EVs with nanodrugs, such as electroporation, extrusion, and ultrasound. However, these approaches may have limited drug-loading rates, poor EV membrane stability, and high cost for large-scale production. Here, it is shown that apoptotic mesenchymal stem cells (MSCs) can encapsulate exogenously added nanoparticles into apoptotic vesicles (apoVs) with a high loading efficiency. When nano-bortezomib is incorporated into apoVs in culture-expanded apoptotic MSCs, nano-bortezomib-apoVs show a synergistic combination effect of bortezomib and apoVs to ameliorate multiple myeloma (MM) in a mouse model, along with significantly reduced side effects of nano-bortezomib. Moreover, it is shown that Rab7 regulates the nanoparticle encapsulation efficiency in apoptotic MSCs and that activation of Rab7 can increase nanoparticle-apoV production. In this study, a previously unknown mechanism to naturally synthesize nano-bortezomib-apoVs to improve MM therapy is revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号