首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, the influence of two different types of cations on the gel formation and structure of mixed gel networks comprised of semiconductor (namely CdSe/CdS nanorods NR) and Au nanoparticles (NP) as well as on the respective monocomponent gels is investigated. Heteroassemblies built from colloidal building blocks are usually prepared by ligand removal or cross-linking, thus, both the surface chemistry and the destabilising agent play an essential role in the gelation process. Due to the diversity of the composition, morphology, and optical properties of the nanoparticles, a versatile route to fabricate functional heteroassemblies is of great demand. In the present work, the optics, morphology, and gelation mechanism of pure semiconductor and noble metal as well as their mixed nanoparticle gel networks are revealed. The influence of the gelation agents (bivalent and trivalent cations) on the structure-property correlation is elucidated by photoluminescence, X-ray photoelectron spectroscopy, and electron microscopy measurements. The selection of cations drastically influences the nano- and microstructure of the prepared gel network structures driven by the affinity of the cations to the ligands and the nanoparticle surface. This gelation technique provides a new platform to control the formation of porous assemblies based on semiconductor and metal nanoparticles.  相似文献   

2.
Cysteine acrylamide (N-acryloyl L-cysteine) stabilizes CdS nanoparticles as the particles form in aqueous dispersions. Cysteine acrylamide also exchanges for citrate on the surfaces of CdSe and core/shell CdSe/CdS nanoparticles to provide greater stability. Heating of the nanoparticle dispersions polymerizes the cysteine acrylamide on the surface to form a more efficient polydentate stabilizer. The polymer-coated nanoparticle dispersions are colloidally stable even after removal of low molecular weight solutes by dialysis. Emission quantum yields of the polymer-coated CdSe and CdSe/CdS samples were 0.9% and 2.6%, respectively, after aging of the samples in light. CdSe/CdS coated with poly(cysteine acrylamide) is colloidally stable for at least two years in the dark at 5 degrees C.  相似文献   

3.
1D core–shell heterojunction nanostructures have great potential for high‐performance, compact optoelectronic devices owing to their high interface area to volume ratio, yet their bottom‐up assembly toward scalable fabrication remains a challenge. Here the site‐controlled growth of aligned CdS–CdSe core–shell nanowalls is reported by a combination of surface‐guided vapor–liquid–solid horizontal growth and selective‐area vapor–solid epitaxial growth, and their integration into photodetectors at wafer‐scale without postgrowth transfer, alignment, or selective shell‐etching steps. The photocurrent response of these nanowalls is reduced to 200 ns with a gain of up to 3.8 × 103 and a photoresponsivity of 1.2 × 103 A W?1, the fastest response at such a high gain ever reported for photodetectors based on compound semiconductor nanostructures. The simultaneous achievement of sub‐microsecond response and high‐gain photocurrent is attributed to the virtues of both the epitaxial CdS–CdSe heterojunction and the enhanced charge‐separation efficiency of the core–shell nanowall geometry. Surface‐guided nanostructures are promising templates for wafer‐scale fabrication of self‐aligned core–shell nanostructures toward scalable fabrication of high‐performance compact photodetectors from the bottom‐up.  相似文献   

4.
Precise control of the selective growth of heterostructures with specific composition and functionalities is an emerging and extremely challenging topic. Here, the first investigation of the difference in binding energy between a series of metal–semiconductor heterostructures based on layered V2–VI3 nanostructures is investigated by means of density functional theory. All lateral configurations show lower formation energy compared with that of the vertical ones, implying the selective growth of metal nanoparticles. The simulation results are supported by the successful fabrication of self‐assembled Ag/Cu‐nanoparticle‐decorated p‐type Sb2Te3 and n‐type Bi2Te3 nanoplates at their lateral sites through a solution reaction. The detailed nucleation–growth kinetics are well studied with controllable reaction times and precursor concentrations. Accompanied by the preserved topological structure integrity and electron transfer on the semiconductor host, exceptional properties such as dramatically increased electrical conductivity are observed thanks to the pre‐energy‐filtering effect before carrier injection. A zigzag thermoelectric generator is built using Cu/Ag‐decorated Sb2Te3 and Bi2Te3 as p–n legs to utilize the temperature gradient in the vertical direction. Synthetic approaches using similar chalcogenide nanoplates as building blocks, as well as careful control of the dopant metallic nanoparticles or semiconductors, are believed to be broadly applicable to other heterostructures with novel applications.  相似文献   

5.
Periodic fluorine‐doped tin oxide inverse opals (FTO IOs) grafted with CdS nanorods (NRs) and CdSe clusters are reported for improved photoelectrochemical (PEC) performance. This hierarchical photoanode is fabricated by a combination of dip‐coating, hydrothermal reaction, and chemical bath deposition. The growth of 1D CdS NRs on the periodic walls of 3D FTO IOs forms a unique 3D/1D hierarchical structure, providing a sizeable specific surface area for the loading of CdSe clusters. Significantly, the periodic FTO IOs enable uniform light scattering while the abundant surrounded CdS NRs induce additional random light scattering, combining to give multiple light scattering within the complete hierarchical structure, significantly improving light‐harvesting of CdS NRs and CdSe clusters. The high electron collection ability of FTO IOs and the CdS/CdSe heterojunction formation also contribute to the enhanced charge transport and separation. Due to the incorporation of these enhancement strategies in one hierarchical structure, FTO IOs/CdS NRs/CdSe clusters present an improved PEC performance. The photocurrent density of FTO IOs/CdS NRs/CdSe clusters at 1.23 V versus reversible hydrogen electrode reaches 9.2 mA cm?2, which is 1.43 times greater than that of CdS NRs/CdSe clusters and 3.83 times of CdS NRs.  相似文献   

6.
Core–shell CdSe/CdS nanocrystals are a very promising material for light emitting applications. Their solution‐phase synthesis is based on surface‐stabilizing ligands that make them soluble in organic solvents, like toluene or chloroform. However, solubility of these materials in water provides many advantages, such as additional process routes and easier handling. So far, solubilization of CdSe/CdS nanocrystals in water that avoids detrimental effects on the luminescent properties poses a major challenge. This work demonstrates how core–shell CdSe/CdS quantum dot‐in‐rods can be transferred into water using a ligand exchange method employing mercaptopropionic acid (MPA). Key to maintaining the light‐emitting properties is an enlarged CdS rod diameter, which prevents potential surface defects formed during the ligand exchange from affecting the photophysics of the dot‐in‐rods. Films made from water‐soluble dot‐in‐rods show amplified spontaneous emission (ASE) with a similar threshold (130 μJ/cm2) as the pristine material (115 μJ/cm2). To demonstrate feasibility for lasing applications, self‐assembled microlasers are fabricated via the “coffee‐ring effect” that display single‐mode operation and a very low threshold of ~10 μJ/cm2. The performance of these microlasers is enhanced by the small size of MPA ligands, enabling a high packing density of the dot‐in‐rods.  相似文献   

7.
Hybrid semiconductor–metal nanoparticles are interesting materials for use as photocatalysts due to their tunable properties and chemical processibility. Their function in the evolution of hydrogen in photocatalytic water splitting is the subject of intense current investigation. Here, the effects of the surface coatings on the photocatalytic function are studied, with Au‐tipped CdS nanorods as a model hybrid nanoparticle system. Kinetic measurements of the hydrogen evolution rate following photocatalytic water reduction are performed on similar nanoparticles but with different surface coatings, including various types of thiolated alkyl ligands and different polymer coatings. The apparent hydrogen evolution quantum yields are found to strongly depend on the surface coating. The lowest yields are observed for thiolated alkyl ligands. Intermediate values are obtained with L‐glutathione and poly(styrene‐co‐maleic anhydride) polymer coatings. The highest efficiency is obtained for polyethylenimine (PEI) polymer coating. These pronounced differences in the photocatalytic efficiencies are correlated with ultrafast transient absorption spectroscopy measurements, which show a faster bleach recovery for the PEI‐coated hybrid nanoparticles, consistent with faster and more efficient charge separation. These differences are primarily attributed to the effects of surface passivation by the different coatings affecting the surface trapping of charge carriers that compete with effective charge separation required for the photocatalysis. Further support of this assignment is provided from steady‐state emission and time‐resolved spectral measurements, performed on related strongly fluorescing CdSe/CdS nanorods. The control and understanding of the effect of the surface coating of the hybrid nanosystems on the photocatalytic processes is of importance for the potential application of hybrid nanoparticles as photocatalysts.  相似文献   

8.
Capping agents play an important role in the colloidal synthesis of nanomaterials because they control the nucleation and growth of particles, as well as their chemical and colloidal stability. During recent years tetrazole derivatives have proven to be advanced capping ligands for the stabilization of semiconductor and metal nanoparticles. Tetrazole‐capped nanoparticles can be prepared by solution‐phase or solventless single precursor approaches using metal derivatives of tetrazoles. The solventless thermolysis of metal tetrazolates can produce both individual semiconductor nanocrystals and nanostructured metal monolithic foams displaying low densities and high surface areas. Alternatively, highly porous nanoparticle 3D assemblies are achieved through the controllable aggregation of tetrazole‐capped particles in solutions. This approach allows for the preparation of non‐ordered hybrid structures consisting of different building blocks, such as mixed semiconductor and metal nanoparticle‐based (aero)gels with tunable compositions. Another unique property of tetrazoles is their complete thermal decomposition, forming only gaseous products, which is employed in the fabrication of organic‐free semiconductor films from tetrazole‐capped nanoparticles. After deposition and subsequent thermal treatment these films exhibit significantly improved electrical transport. The synthetic availability and advances in the functionalization of tetrazoles necessitate further design and study of tetrazole‐capped nanoparticles for various applications.  相似文献   

9.
Although metal nanoparticles (NPs) stabilized with self‐assembled monolayers (SAMs) of various organic ligands have proven useful in applications ranging from chemical sensing, to bionanotechnology, to plasmonics and energy conversion, they have not been widely considered as suitable building blocks of electronic circuitry, largely because metals screen electric fields and prevent electrically tunable conductivity. However, when metal nanoparticles a few nanometers in size are stabilized by charged ligands and placed under bias, the counterions surrounding the NPs can redistribute and establish local electric fields that feed back into the electronic currents passing through the nanoparticles' metallic cores. Herein, the manner in which the interplay between counterion gradients and electron flows can be controlled by using different types of SAMs is discussed. This can give rise to a new class of nanoparticle‐based “chemoelectronic” logic circuits capable of sensing, processing, and ultimately reporting various chemical signals.  相似文献   

10.
A synthetic route to prepare metal–semiconductor hybrid nanoparticles is presented, along with the possibility to tune the ratio of primary to secondary nucleation and the morphology of the semiconductor material grown on the metal nanoparticle seeds. Gold and cobalt‐platinum nanoparticles are employed as metal seeds, on which CdS or CdSe is grown. Using transmission electron microscopy, absorption spectroscopy (UV–vis), and powder X‐ray diffraction as characterization techniques, a significant influence of chloride ions on the type of nucleation (that is, secondary or primary nucleation) as well as on the shape of the resulting heterostructures is observed. Partially replacing the commonly used cadmium precursor CdO by varying amounts of CdCl2 opens access to rod‐like, multiarmed, flower‐like, and bullet‐like structures. The results suggest that neither pure CdO nor pure CdCl2 as precursors but only a mixture of both make these structures obtainable. In this article, the influence of the chloride ion concentration during semiconductor growth on metal seeds is investigated in depth. The morphology of the resulting heterostructures is characterized carefully, and a growth mechanism is suggested. Furthermore, it is shown that this synthetic approach can be transferred to seeds of various metals such as platinum, gold, and cobalt platinum.  相似文献   

11.
Plasmon‐mediated photocatalytic systems generally suffer from poor efficiency due to weak absorption overlap and thus limited energy transfer between the plasmonic metal and the semiconductor. Herein, a near‐ideal plasmon‐mediated photocatalyst system is developed. Au/CdSe nanocrystal clusters (NCs) are successfully fabricated through a facile emulsion‐based self‐assembly approach, containing Au nanoparticles (NPs) of size 2.8, 4.6, 7.2, or 9.0 nm and CdSe quantum dots (QDs) of size ≈3.3 nm. Under visible‐light irradiation, the Au/CdSe NCs with 7.2 nm Au NPs afford very stable operation and a remarkable H2‐evolution rate of (10× higher than bare CdSe NCs). Plasmon resonance energy transfer from the Au NPs to the CdSe QDs, which enhances charge‐carrier generation in the semiconductor and suppresses bulk recombination, is responsible for the outstanding photocatalytic performance. The approach used here to fabricate the Au/CdSe NCs is suitable for the construction of other plasmon‐mediated photocatalysts.  相似文献   

12.
Single crystals of CdSe:Cr and CdS:Cr with the doping level up to 1019 cm−3 were grown by a vapor phase contact-free technique. An efficient room-temperature pulsed and continuous wave (CW) lasing with the CdSe:Cr crystal was achieved. First a pulsed lasing with the CdS:Cr crystal was also demonstrated. The slope efficiency on the absorbed energy was as high as 46.5% for Cr2+:CdSe and 39% for Cr2+:CdS lasers. Using an intra-cavity prism, the Cr2+:CdSe laser wavelength was continuously tuned from 2.26 to 3.61 μm while the Cr2+:CdS laser from 2.2 to 3.3 μm. For the laser wavelength, the crystal passive loss coefficient was estimated to be smaller than 0.045 cm−1 for CdSe:Cr crystals and 0.039 cm−1 for CdS:Cr crystals. For the Cr2+:CdSe laser, the CW output power up to 1.07 W was achieved.  相似文献   

13.
Self‐assembled protein nanoparticles have attracted much attention in biomedicine because of their biocompatibility and biodegradability. Protein nanoparticles have become widely utilized as diagnostic or therapeutic agents for various cancers. However, there are no reports that protein nanoparticles can specifically target mitochondria. This targeting is desirable, since mitochondria are critical in the development of cancer cells. In this study, the discovery of a novel self‐assembled metal protein nanoparticle, designated GST‐MT‐3, is reported, which targets the mitochondria of cancer cells within 30 min in vitro and rapidly accumulates in tumors within 1 h in vivo. The nanoparticles chelate cobalt ions [GST‐MT‐3(Co2+)], which induces reactive oxygen species (ROS) production and reduces the mitochondrial membrane potential. These effects lead to antitumor activity in vivo. GST‐MT‐3(Co2+) with covalently conjugated paclitaxel synergistically suppress tumors and prolong survival. Importantly, the effective dosage of paclitaxel is 50‐fold lower than that utilized in standard chemotherapy (0.2 vs 10 mg kg?1). To the best of the authors' knowledge, GST‐MT‐3 is the first reported protein nanoparticle that targets mitochondria. It has the potential to be an excellent platform for combination therapies.  相似文献   

14.
Graphene‐based sheets that possess a unique nanostructure and a variety of fascinating properties are appealing as promising nanoscale building blocks of new composites. Herein, graphene oxide sheets are used as the nanoscale substrates for the formation of silver‐nanoparticle films. These silver‐nanoparticle films assembled on graphene oxide sheets are flexible and can form stable suspensions in aqueous solutions. They can also be easily processed, forming macroscopic films with high reflectivity. Raman signals of graphene oxide in such hybrid films are increased by the attached silver nanoparticles, displaying surface‐enhanced Raman scattering activity. The degree of enhancement can be adjusted by varying the quantity of silver nanoparticles on the graphene oxide sheets.  相似文献   

15.
《Optical Materials》2010,32(12):1888-1890
Single crystals of CdSe:Cr and CdS:Cr with the doping level up to 1019 cm−3 were grown by a vapor phase contact-free technique. An efficient room-temperature pulsed and continuous wave (CW) lasing with the CdSe:Cr crystal was achieved. First a pulsed lasing with the CdS:Cr crystal was also demonstrated. The slope efficiency on the absorbed energy was as high as 46.5% for Cr2+:CdSe and 39% for Cr2+:CdS lasers. Using an intra-cavity prism, the Cr2+:CdSe laser wavelength was continuously tuned from 2.26 to 3.61 μm while the Cr2+:CdS laser from 2.2 to 3.3 μm. For the laser wavelength, the crystal passive loss coefficient was estimated to be smaller than 0.045 cm−1 for CdSe:Cr crystals and 0.039 cm−1 for CdS:Cr crystals. For the Cr2+:CdSe laser, the CW output power up to 1.07 W was achieved.  相似文献   

16.
A new and convenient route is developed to synthesize CdSe and core–shell CdSe/CdS quantum dots (QDs) in aqueous solution. CdSe QDs are prepared by introducing H2Se gas into the aqueous medium containing Cd2+ ions. The synthesized CdSe QDs are further capped with CdS to form core–shell CdSe/CdS QDs by reacting with H2S gas. The gaseous precursors, H2Se and H2S, are generated on-line by reducing SeO3 2? with NaBH4 and the reaction between Na2S and H2SO4, and introduced sequentially into the solution to form CdSe and CdSe/CdS QDs, respectively. The synthesized water-soluble CdSe and CdSe/CdS QDs possess high quantum yield (3 and 20 %) and narrow full-width-at-half-maximum (43 and 38 nm). The synthesis process is easily reproducible with simple apparatus and low-toxic chemicals. The relatively standard deviation of maxima fluorescence intensity is only 2.1 % (n = 7) for CdSe and 3.6 % (n = 7) for CdSe/CdS QDs. This developed route is simple, environmentally friendly and can be readily extended to the large-scale aqueous synthesis of QDs.  相似文献   

17.
Destabilization of a ligand-stabilized semiconductor nanocrystal solution with an oxidizing agent can lead to a macroscopic highly porous self-supporting nanocrystal network entitled hydrogel, with good accessibility to the surface. The previously reported charge carrier delocalization beyond a single nanocrystal building block in such gels can extend the charge carrier mobility and make a photocatalytic reaction more probable. The synthesis of ligand-stabilized nanocrystals with specific physicochemical properties is possible, thanks to the advances in colloid chemistry made in the last decades. Combining the properties of these nanocrystals with the advantages of nanocrystal-based hydrogels will lead to novel materials with optimized photocatalytic properties. This work demonstrates that CdSe quantum dots, CdS nanorods, and CdSe/CdS dot-in-rod-shaped nanorods as nanocrystal-based hydrogels can exhibit a much higher hydrogen production rate compared to their ligand-stabilized nanocrystal solutions. The gel synthesis through controlled destabilization by ligand oxidation preserves the high surface-to-volume ratio, ensures the accessible surface area even in hole-trapping solutions and facilitates photocatalytic hydrogen production without a co-catalyst. Especially with such self-supporting networks of nanocrystals, the problem of colloidal (in)stability in photocatalysis is circumvented. X-ray photoelectron spectroscopy and photoelectrochemical measurements reveal the advantageous properties of the 3D networks for application in photocatalytic hydrogen production.  相似文献   

18.
The cover image shows a transmission electron microscopy image of selenium nanowires from the self‐reorganization process of stabilizer‐depleted CdSe nanoparticles in the presence of a complexing agent. On p. 358, Kotov and co‐workers report the preparation of semiconductor nanowires with tightly controlled diameter using stabilizer‐depleted nanoparticles rather than typical molecules as reaction precursors.  相似文献   

19.
CdS nanostructures have received much attention in recent years as building blocks for optoelectronic devices due to their unique physical and chemical properties. This progress report provides an overview of recent research about rational design of CdS nanoscale photodetectors. Three kinds of photodetectors according to the metal‐semiconductor contact types are discussed in detail: Ohmic contact, Schottky contact, and field enhanced transistor configuration. The focus is on the tuning of optical and electrical properties CdS nanostructures by element doping, composition and bandgap engineering, and heterojunction integration, along with thus modified device performances generated during these tuning processes. Latest concepts of photodetector design such as flexible, self‐powered, plasmonic, and piezophototronic photodetectors with novel properties are introduced to demonstrate the future directions of such an exciting research field.  相似文献   

20.
CdSe/CdS semiconductor nanocrystal heterostructures are currently of high interest for the peculiar electronic structure offering unique optical properties. Here, we show that nanorods and tetrapods made of such material combination enable efficient multiexcitonic emission, when the volume of the nanoparticle is maximized. This condition is fulfilled by tetrapods with an arm length of 55 nm and results in a dual emission with comparable intensities from the CdS arms and CdSe core. The relative intensities of the dual emission, originating from exciton phase-space filling and reduced Auger recombination, can be effectively modulated by the photon fluence of the pump laser. The results, obtained under steady-state detection conditions, highlight the properties of tetrapods as multiexciton dual-color emitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号