首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Helical nanofilament (HNF) phases form as a result of an intralayer mismatch between top and bottom molecular halves in bent‐core liquid crystals (BC‐LCs) that is relieved by local saddle‐splay geometry. HNFs are immensely attractive for photovoltaic and chiral separation applications and as templates for the chiral spatial assembly of guest molecules. Here, the synthesis and characterization of two unichiral BC‐LCs and one racemic mixture with tris‐biphenyl‐diester cores featuring chiral (R,R) and (S,S) or racemic 2‐octyloxy aliphatic side chains are presented. In comparison to the achiral compound with linear side chains forming an intralayer modulated HNF phase (HNFmod), synchrotron small angle X‐ray diffraction indicates that the unichiral derivatives form a dual modulated HNF phase with intra‐ as well as interlayer modulations (HNFmod2) suggesting a columnar local structure of the nanofilaments. Transmission electron microscopy and circular dichroism spectropolarimetry confirm that the unichiral materials exclusively form homochiral HNFs with a twist sense‐matching secondary twist. A contact preparation provides the first example of two identical chiral liquid crystal phases only differing in their handedness that do not mix and form an achiral liquid crystal phase with an entirely different structure in the contact zone.  相似文献   

2.
Light‐induced phenomena occurring in nature and in synthetic materials are fascinating and have been exploited for technological applications. Here visible‐light‐induced formation of a helical superstructure is reported, i.e., a cholesteric liquid crystal phase, in orientationally ordered fluids, i.e., nematic liquid crystals, enabled by a visible‐light‐driven chiral molecular switch. The cyclic‐azobenzene‐based chiral molecular switch exhibits reversible photoisomerization in response to visible light of different wavelengths due to the band separation of n–π* transitions of its trans‐ and cis‐isomers. Green light (530 nm) drives the trans‐to‐cis photoisomerization whereas the cis‐to‐trans isomerization process of the chiral molecular switch can be caused by blue light (440 nm). It is observed that the helical twisting power of this chiral molecular switch increases upon irradiation with green light, which enables reversible induction of helical superstructure in nematic liquid crystals containing a very small quantity of the molecular switch. The occurrence of the light‐induced helical superstructure enables the formation of diffraction gratings in cholesteric films.  相似文献   

3.
Temperature‐enhanced solvent vapor annealing (TESVA) is used to self‐assemble functionalized polycyclic aromatic hydrocarbon molecules into ordered macroscopic layers and crystals on solid surfaces. A novel C3 symmetric hexa‐peri‐hexabenzocoronene functionalized with alternating hydrophilic and hydrophobic side chains is used as a model system since its multivalent character can be expected to offer unique self‐assembly properties and behavior in different solvents. TESVA promotes the molecule's long‐range mobility, as proven by their diffusion on a Si/SiOx surface on a scale of hundreds of micrometers. This leads to self‐assembly into large, ordered crystals featuring an edge‐on columnar type of arrangement, which differs from the morphologies obtained using conventional solution‐processing methods such as spin‐coating or drop‐casting. The temperature modulation in the TESVA makes it possible to achieve an additional control over the role of hydrodynamic forces in the self‐assembly at surfaces, leading to a macroscopic self‐healing within the adsorbed film notably improved as compared to conventional solvent vapor annealing. This surface re‐organization can be monitored in real time by optical and atomic force microscopy.  相似文献   

4.
Self‐assembly of chiral nanostructures is of considerable interest, since the ability to control the chirality of these structures has direct ramifications in biology and materials science. A new approach to design chiral nanostructures from self‐assembly of N‐(9‐fluorenylmethoxycarbonyl)‐protected phenylalanine‐tryptophan‐lysine tripeptides is reported. The terminal charges can induce helical twisting of the assembled β‐sheets, enabling the formation of well‐defined chiral nanostructures. The degree and direction of twisting in the β‐sheets can be precisely tailored through in situ pH and temperature modulations. This enables the assembly of reconfigurable chiral nanomaterials with easily adjustable size and handedness. These results offer new insight into the mechanism of helical twist formation, which may enable the precise assembly of highly dynamical materials with potential applications in biomedicine, chiroptics, and chiral sensing.  相似文献   

5.
Interconversion between extended and bent structures at the pendant groups of a chiral polyene framework [poly(phenylacetylene) with (R)‐(2‐methoxy‐2‐phenylacetyl)glycine residues linked to 4‐vinylanilines] allows the reversible colorimetric transformation from stretched to compressed helical cis‐transoid polyenic structures through manipulation of the flexible spacer. This transformation generates either organogels (stretched helical form) or nanoparticles (compressed helical form) under the control of polar/low polar stimuli respectively and opens the way to the development of new sensors and stimuli‐sensitive materials based on these concepts.  相似文献   

6.
Photonic microcapsules with onion‐like topology are microfluidically designed to have cholesteric liquid crystals with opposite handedness in their core and shell. The microcapsules exhibit structural colors caused by dual photonic bandgaps, resulting in a rich variety of color on the optical palette. Moreover, the microcapsules can switch the colors from either core or shell depending on the selection of light‐handedness.  相似文献   

7.
Bottom‐up multicomponent molecular self‐assembly is an efficient approach to fabricate and manipulate chiral nanostructures and their chiroptical activities such as the Cotton effect and circular polarized luminescence (CPL). However, the integrated coassembly suffers from spontaneous and inherent systematic pathway complexity with low yield and poor fidelity. Consequently, a rational design of chiral self‐assembled systems with more than two components remains a significant challenge. Herein, a modularized, ternary molecular self‐assembly strategy that generates chiroptically active materials at diverse hierarchical levels is reported. N‐terminated aromatic amino acids appended with binding sites for charge transfer and multiple hydrogen bonds undergo the evolution of supramolecular chirality with unique handedness and luminescent color, generating abundant CPL emission with high luminescence dissymmetry factor values in precisely controlled modalities. Ternary coassembly facilitates high‐water‐content hydrogel formation constituted by super‐helical nanostructures, demonstrating a helix to toroid topological transition. This discovery would shed light on developing complicated multicomponent systems in mimicking biological coassembly events.  相似文献   

8.
Functional soft materials exhibiting distinct functionalities in response to a specific stimulus are highly desirable towards the fabrication of advanced devices with superior dynamic performances. Herein, two novel light‐driven chiral fluorescent molecular switches have been designed and synthesized that are able to exhibit unprecedented reversible Z/E photoisomerization behavior along with tunable fluorescence intensity in both isotropic and anisotropic media. Cholesteric liquid crystals fabricated using these new fluorescent molecular switches as chiral dopants exhibit reversible reflection color tuning spanning the visible and infrared region of the spectrum. Transparent display devices have been fabricated using both low chirality and high chirality cholesteric films that operate either exclusively in fluorescent mode or in both fluorescent and reflection mode, respectively. The dual mode display device employing short pitch cholesteric film is able to function on demand under all ambient light conditions including daylight and darkness with fast response and high resolution. Moreover, the proof‐of‐concept for a “remote‐writing board” using cholesteric films containing one of the light‐driven chiral fluorescent molecular switches with ease of fabrication and operation is disclosed herein. Such optically rewritable transparent display devices enabled by light‐driven chiral fluorescent molecular switches pave a new way for developing novel display technology under different lighting conditions.  相似文献   

9.
Supramolecular and macromolecular functional helical superstructures are ubiquitous in nature and display an impressive catalog of intriguing and elegant properties and performances. In materials science, self‐organized soft helical superstructures, i.e., cholesteric liquid crystals (CLCs), serve as model systems toward the understanding of morphology‐ and orientation‐dependent properties of supramolecular dynamic helical architectures and their potential for technological applications. Moreover, most of the fascinating device applications of CLCs are primarily determined by different orientations of the helical axis. Here, the control of the helical axis orientation of CLCs and its dynamic switching in two and three dimensions using different external stimuli are summarized. Electric‐field‐, magnetic‐field‐, and light‐irradiation‐driven orientation control and reorientation of the helical axis of CLCs are described and highlighted. Different techniques and strategies developed to achieve a uniform lying helix structure are explored. Helical axis control in recently developed heliconical cholesteric systems is examined. The control of the helical axis orientation in spherical geometries such as microdroplets and microshells fabricated from these enticing photonic fluids is also explored. Future challenges and opportunities in this exciting area involving anisotropic chiral liquids are then discussed.  相似文献   

10.
The ability to tune molecular self‐organization with an external stimulus is a main driving force in the bottom‐up nanofabrication of molecular devices. Light‐driven chiral molecular switches or motors in liquid crystals that are capable of self‐organizing into optically tunable helical superstructures undoubtedly represent a striking example, owing to their unique property of selective light reflection and which may lead to applications in the future. In this review, we focus on different classes of light‐driven chiral molecular switches or motors in liquid crystal media for the induction and manipulation of photoresponsive cholesteric liquid crystal systems and their consequent applications. Moreover, the change of helical twisting powers of chiral dopants and their capability of helix inversion in the induced cholesteric phases are highlighted and discussed in the light of their molecular geometric changes.  相似文献   

11.
Nanospheres and nanotubes with full control of their size and helical sense are obtained in chloroform from the axially racemic chiral poly(phenylacetylene) poly‐(R)‐ 1 using either Ag+ as both chiral inducer and cross‐linking agent or Na+ as chiral inducer and Ag+ as cross‐linking agent. The size is tuned by the polymer/ion ratio while the helical sense is modulated by the polymer/cosolvent (i.e., MeCN) ratio. In this way, the helicity and the size of the nanoparticles can be easily interconverted by very simple experimental changes.  相似文献   

12.
N‐annulated perylenedicarboxamides 1–3 form supramolecular polymers with a strong tendency to aggregate. The bundles of fibers formed generate a spontaneous anisotropy that conditions the chiroptical features of the described molecules in solution; a strong linear dichroism effect accompanies the circular dichroism (CD) outcome. There is no influence of the point chirality existing at the side chains of 1 and 2 , and these molecules present the same chiroptical features as achiral 3 . Mechanical rotary stirring increases the CD response and the sign of the dichroic signal changes with the stirring direction. Theoretical calculations indicate that the self‐assembly of 1–3 in helical columnar stacks generates atropisomers by the restricted rotation of the H‐bonded benzamide units. Molecular mechanics/molecular dynamics calculations predict a feasible intrastack stereomutation of the helical aggregates due to the rapid rupture/formation of the amide H‐bonds. This oscillating helicity, together with the fact that right‐ and left‐handed helices are predicted to be mostly isoenergetic, justifies the negligible contribution of the molecular chirality embedded in the paraffinic side chains of 1 and 2 . The reported CD behavior contributes to shed light on the physical processes promoting flexible macroscopic chirality that, in turn, can be utilized for the spectroscopic visualization of torsional flows generated in a vortex.  相似文献   

13.
Herein, the synthesis and self‐assembling features of N‐heterotriangulenes 1 – 3 decorated in their periphery with 3,4,5‐trialkoxy‐N‐(alkoxy)benzamide moieties that enable kinetic control of the supramolecular polymerization process are described. The selection of an appropriate solvent results in a tunable energy landscape in which the relative energy of the different monomeric or aggregated species can be regulated. Thus, in a methylcyclohexane/toluene (MCH/Tol) mixture, intramolecular hydrogen‐bonding interactions in the peripheral side units favor the formation of metastable inactivated monomers that evolve with time at precise conditions of concentration and temperature. A pathway complexity in the supramolecular polymerization of 1 – 3 cannot be determined in MCH/Tol mixtures but, importantly, this situation changes by using CCl4. In this solvent, the off‐pathway product is a face‐to‐face H‐type aggregate and the on‐pathway product is the slipped face‐to‐face J‐type aggregate. The autocatalytic transformation of the metastable monomeric units, as well as the two competing off‐ and on‐pathway aggregates allow the realization of seeded and living supramolecular polymerizations. Interestingly, the presence of chiral, branched side chains in chiral ( S )‐ 2 noticeably retards the kinetics of the investigated transformations. This work brings to light the relevance of controlling the pathway complexity in self‐assembling units and opens new avenues for the investigation of complex and functional supramolecular structures.  相似文献   

14.
Conjugated‐polyelectrolyte (CPE)‐functionalized reduced graphene oxide (rGO) sheets are synthesized for the first time by taking advantage of a specially designed CPE, PFVSO3, with a planar backbone and charged sulfonate and oligo(ethylene glycol) side chains to assist the hydrazine‐mediated reduction of graphene oxide (GO) in aqueous solution. The resulting CPE‐functionalized rGO (PFVSO3‐rGO) shows excellent solubility and stability in a variety of polar solvents, including water, ethanol, methanol, dimethyl sulfoxide, and dimethyl formamide. The morphology of PFVSO3‐rGO is studied by atomic force microscopy, X‐ray diffraction, and transmission electron microscopy, which reveal a sandwich‐like nanostructure. Within this nanostructure, the backbones of PFVSO3 stack onto the basal plane of rGO sheets via strong π–π interactions, while the charged hydrophilic side chains of PFVSO3 prevent the rGO sheets from aggregating via electrostatic and steric repulsions, thus leading to the solubility and stability of PFVSO3‐rGO in polar solvents. Optoelectronic studies show that the presence of PFVSO3 within rGO induces photoinduced charge transfer and p‐doping of rGO. As a result, the electrical conductivity of PFVSO3‐rGO is not only much better than that of GO, but also than that of the unmodified rGO.  相似文献   

15.
SnO2 nanotubes with controllable morphologies are successfully synthesized by using a variety of one‐dimensional (1D) silica mesostructures as effective sacrificial templates. Firstly, 1D silica mesostructures with different morphologies, such as chiral nanorods, nonchiral nanofibers, and helical nanotubes, are readily synthesized in aqueous solution by using the triblock copolymer Pluronic F127 and the cationic surfactant cetyltrimethylammonium bromide as binary templates. Subsequently, the obtained 1D silica mesostructures are used as sacrificial templates to synthesize SnO2 nanotubes with preserved morphologies via a simple hydrothermal route, resulting in the formation of well‐defined SnO2 nanotubes with different lengths and unique helical SnO2 nanotubes with a wealth of conformations. It is revealed that both of the short and long SnO2 nanotubes showed much better performance as anode materials in lithium‐ion batteries than normal SnO2 nanopowders, which might be related to the hollow structure of the nanotubes that could alleviate the volume changes and mechanical stress during charging/discharging cycling. Moreover, the capacity and cycling performance of short nanotubes, which showed a specific discharge capacity of 468 mAh g?1 after 30 cycles, are considerably better than those of long nanotubes because of the more robust structure of the short nanotubes.  相似文献   

16.
Unravelling the rules of molecular motion is a contemporary challenge that promises to support the development of responsive materials and is likely to enhance the understanding of functional motion. Advances in integrating light-driven molecular motors in soft matter have led to the design and realization of chiral nematic (cholesteric) liquid crystals that can respond to light with modification of their helical pitch, and also with helix inversion. Under illumination, these chiral liquid crystals convert from one helical geometry to another. Here, a series of light-driven molecular motors that feature a rich configurational landscape is presented, specifically which involves three stable chiral states. The succession of chiral structures involved in the motor cycle is transmitted at higher structural levels, as the cholesteric liquid crystals that are formed can interconvert between helices of opposite handedness, reversibly. In these materials, the dynamic features of the motors are thus expressed at the near-macroscopic, functional level, into addressable colors that can be used in advanced materials for tunable optics and photonics.  相似文献   

17.
The film morphology is extremely significant for solution processed perovskite devices. Through fine morphology engineering without using any additives or further posttreatments, a full‐coverage and high quantum yield perovskite film has been achieved based on one‐step spin‐coating method. The morphologies and film characteristics of MAPbBr3 with different MABr:PbBr2 starting material ratios are in‐depth investigated by scanning electron microscopy, atomic force microscopy, X‐ray diffraction, photoluminescence, and time resolved photoluminescence. High performance organometal halide perovskite light‐emitting didoes (PeLEDs) based on simple device structure of indium tin oxide/poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)/perovskite/TPBi/Ca/Al are demonstrated. The green PeLED based on MAPbBr3 shows a maximum luminance of 8794 cd m?2 (at 7.3 V) and maximum current efficiency of 5.1 cd A?1 (at 5.1 V). Furthermore, a class of hybrid PeLEDs by adjusting the halide ratios of methylammonium lead halide (MAPbX3, where X is Cl, Br, or I) are also demonstrated at room temperature. These mix‐halogenated PeLEDs show bright luminance (above 100 cd m?2) with narrow and clean emission bands over the wide color gamut.  相似文献   

18.
SrWO4 crystals with various morphologies have been synthesized via a system of supported liquid membrane in the presence of different additive reagents at room temperature. The X-ray diffraction patterns show that the obtained SrWO4 crystals belong to tetragonal structure. Scanning electron microscopy results reveal that additive reagents can highly affect the morphology and size of SrWO4 crystals. In fluorescence spectra there is a blue-shift emission peak at room temperature, which shows that it has potential applications in device designs and photoelectron fields. A possible growth mechanism is discussed. An erratum to this article can be found at  相似文献   

19.
Spin‐dependent contrasting phenomena at K and K′ valleys in monolayer semiconductors have led to addressable valley degree of freedom, which is the cornerstone for emerging valleytronic applications in information storage and processing. Tunable and active modulation of valley dynamics in a monolayer WSe2 is demonstrated at room temperature through controllable chiral Purcell effects in plasmonic chiral metamaterials. The strong spin‐dependent modulation on the spontaneous decay of valley excitons leads to tunable handedness and spectral shift of valley‐polarized emission, which is analyzed and predicted by an advanced theoretical model and further confirmed by experimental measurements. Moreover, large active spectral tuning (≈24 nm) and reversible ON/OFF switching of circular polarization of emission are achieved by the solvent‐controllable thickness of the dielectric spacer in the metamaterials. With the on‐demand and active tunability in valley‐polarized emission, chiral Purcell effects can provide new strategies to harness valley excitons for applications in ultrathin valleytronic devices.  相似文献   

20.
Poly(phenylacetylene) (PPA) copolymers containing (R)‐ or (S)‐MPA as minor chiral pendant can be forced to selectively adopt the right‐ o left‐handed helix, in the presence of small amounts of Na+ or Ag+ (“Sergeants and Soldiers Effect”) by addition of a donor cosolvent. The helical sense depends exclusively on the chiral monomer/donor cosolvent ratio, and this allows a perfect on/off tuning of the helicity of the copolymer. When the amount of the donor cosolvent is low, the metal ion complex is stabilized by a cation–π interaction, which is selectively cleaved when the amount of cosolvent is higher. Macroscopically chiral nanospheres and nanotubes composed by helical copolymers with P or M helical sense are also described. Our results demonstrate that it is possible to obtain the two enantiomeric helical structures (P and M helicities) and the corresponding nanospheres and nanotubes from a single helical copolymer, by controlled activation/deactivation of the Sergeant and Soldiers Effect with a donor cosolvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号