首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the finite‐time tracking problem is investigated for a nonholonomic wheeled mobile robot in a fifth‐order dynamic model. We consider the whole tracking error system as a cascaded system. Two continuous global finite‐time stabilizing controllers are designed for a second‐order subsystem and a third‐order subsystem respectively. Then finite‐time stability results for cascaded systems are employed to prove that the closed‐loop system satisfies the finite‐time stability. Thus the closed‐loop system can track the reference trajectory in finite‐time when the desired velocities satisfy some conditions. In particular, we discuss the control gains selection for the third‐order finite‐time controller and give sufficient conditions by using Lyapunov and backstepping techniques. Simulation results demonstrate the effectiveness of our method. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

2.
A nonlinear control algorithm for tracking dynamic trajectories using an aerial vehicle is developed in this work. The control structure is designed using a sliding mode methodology, which contains integral sliding properties. The stability analysis of the closed‐loop system is proved using the Lyapunov formalism, ensuring convergence in a desired finite time and robustness toward unknown and external perturbations from the first time instant, even for high frequency disturbances. In addition, a dynamic trajectory is constructed with the translational dynamics of an aerial robot for autonomous take‐off, surveillance missions, and landing. This trajectory respects the constraints imposed by the vehicle characteristics, allowing free initial trajectory conditions. Simulation results demonstrate the good performance of the controller in closed‐loop system when a quadrotor follows the designed trajectory. In addition, flight tests are developed to validate the trajectory and the controller behavior in real time.  相似文献   

3.
针对具有参数不确定性和未知外部干扰的机械手轨迹跟踪问题提出了一种多输入多输出自适应鲁棒预测控制方法. 首先根据机械手模型设计非线性鲁棒预测控制律, 并在控制律中引入监督控制项; 然后利用函数逼近的方法逼近控制律中因模型不确定性以及外部干扰引起的未知项. 理论证明了所设计的控制律能够使机械手无静差跟踪期望的关节角轨迹. 仿真验证了本文设计方法的有效性.  相似文献   

4.
The attitude tracking of a rigid spacecraft is approached in the presence of uncertain inertias, unknown disturbances, and sudden actuator faults. First, a novel integral terminal sliding mode (ITSM) is designed such that the sliding motion realizes the action of a quaternion‐based nonlinear proportional‐derivative controller. More precisely, on the ITSM, the attitude dynamics behave equivalently to an uncertainty‐free system, and finite‐time convergence of the tracking error is achieved almost globally. A basic ITSM controller is then designed to ensure the ITSM from onset when an upper bound on the system uncertainties is known. Further, to remove this requirement, adaptive techniques are employed to compensate for the uncertainties, and the resultant adaptive ITSM controller stabilizes the system states to a small neighborhood around the sliding surface in finite time. The proposed schemes avoid the singularity intrinsic to terminal sliding mode‐based controllers and the unwinding phenomenon associated with some quaternion‐based controllers. Numerical examples demonstrate the advantageous features of the proposed algorithm. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, a robust tracking controller is proposed for the trajectory tracking problem of a dual‐arm wheeled mobile manipulator subject to some modeling uncertainties and external disturbances. Based on backstepping techniques, the design procedure is divided into two levels. In the kinematic level, the auxiliary velocity commands for each subsystem are first presented. A sliding‐mode equivalent controller, composed of neural network control, robust scheme and proportional control, is constructed in the dynamic level to deal with the dynamic effect. To deal with inadequate modeling and parameter uncertainties, the neural network controller is used to mimic the sliding‐mode equivalent control law; the robust controller is designed to compensate for the approximation error and to incorporate the system dynamics into the sliding manifold. The proportional controller is added to improve the system's transient performance, which may be degraded by the neural network's random initialization. All the parameter adjustment rules for the proposed controller are derived from the Lyapunov stability theory and e‐modification such that uniform ultimate boundedness (UUB) can be assured. A comparative simulation study with different controllers is included to illustrate the effectiveness of the proposed method.  相似文献   

6.
Two important properties of industrial tasks performed by robot manipulators, namely, periodicity (i.e., repetitive nature) of the task and the need for the task to be performed by the end‐effector, motivated this work. Not being able to utilize the robot manipulator dynamics due to uncertainties complicated the control design. In a seemingly novel departure from the existing works in the literature, the tracking problem is formulated in the task space and the control input torque is aimed to decrease the task space tracking error directly without making use of inverse kinematics at the position level. A repetitive learning controller is designed which “learns” the overall uncertainties in the robot manipulator dynamics. The stability of the closed‐loop system and asymptotic end‐effector tracking of a periodic desired trajectory are guaranteed via Lyapunov based analysis methods. Experiments performed on an in‐house developed robot manipulator are presented to illustrate the performance and viability of the proposed controller.  相似文献   

7.
针对可重复使用运载器(reusable launch vehicle,RLV)的六自由度再入模型,考虑模型不确定和外界干扰对再入姿态控制的影响,提出了一种非线性鲁棒控制策略.首先,根据多时间尺度特性将RLV的再入姿态模型分为姿态角子系统和姿态角速率子系统.其次,对每个子系统分别设计光滑二阶滑模控制器和滑模干扰观测器实现子系统的有限时间稳定.利用干扰观测器可以实现对不确定和外界干扰的精确估计,从而对控制器进行有效的补偿.进而,基于Lyapunov理论证明了整个系统的有限时间稳定.最后,通过仿真验证了提出的控制策略具有良好的控制性能和鲁棒性.  相似文献   

8.
A Neural Net Predictive Control for Telerobots with Time Delay   总被引:5,自引:0,他引:5  
This paper extends the Smith Predictor feedback control structure to unknown robotic systems in a rigorous fashion. A new recurrent neural net predictive control (RNNPC) strategy is proposed to deal with input and feedback time delays in telerobotic systems. The proposed control structure consists of a local linearized subsystem and a remote predictive controller. In the local linearized subsystem, a recurrent neural network (RNN) with on-line weight tuning algorithm is employed to approximate the dynamics of the time-delay-free nonlinear plant. The remote controller is a modified Smith predictor for the local linearized subsystem which provides prediction and maintains the desirable tracking performance. Stability analysis is given in the sense of Lyapunov. The result is an adaptive compensation scheme for unknown telerobotic systems with time delays, uncertainties, and external disturbances. A simulation of a two-link robotic manipulator is provided to illustrate the effectiveness of the proposed control strategy.  相似文献   

9.
A design methodology is presented for tracking control of second‐order chained form systems. The methodology separates the tracking‐error dynamics, which are in cascade form, into two parts: a linear subsystem and a linear time‐varying subsystem. The linear time‐varying subsystem, after the first subsystem has converged, can be treated as a chain of integrators for the purposes of a backstepping controller. The two controllers are designed separately and the proof of stability is given by using a result for cascade systems. The method consists of three steps. In the first step we apply a stabilizing linear state feedback to the linear subsystem. In the second step the second subsystem is exponentially stabilized by applying a backstepping procedure. In the final step it is shown that the closed‐loop tracking dynamics of the second‐order chained form system are globally exponentially stable under a persistence of excitation condition on the reference trajectory. The control design methodology is illustrated by application to a second‐order non‐holonomic system. This planar manipulator with two translational and one rotational joint (PPR) is a special case of a second‐order non‐holonomic system. The simulation results show the effectiveness of our approach. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
The output tracking controller design problem is dealt with for a class of nonlinear semi‐strict feedback systems in the presence of mismatched nonlinear uncertainties, external disturbances, and uncertain nonlinear virtual control coefficients of the subsystems. The controller is designed in a backstepping manner, and to avoid the shortcoming of ‘explosion of terms’, the dynamic surface control technique that employs a group of first‐order low‐pass filters is adopted. At each step of the virtual controller design, a robust feedback controller employing some effective nonlinear damping terms is designed to guarantee input‐to‐state practical stable property of the corresponding subsystem, so that the system states remain in the feasible domain. The virtual controller is enhanced by a finite‐time disturbance observer that estimates the disturbance term in a finite‐time. The properties of the composite control system are analyzed theoretically. Furthermore, by exploiting the cascaded structure of the control system, a simplified robust controller is proposed where only the first subsystem employs a disturbance observer. The performance of the proposed methods is confirmed by numerical examples. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
A neural-network-based adaptive controller is proposed for the tracking problem of manipulators with uncertain kinematics, dynamics and actuator model. The adaptive Jacobian scheme is used to estimate the unknown kinematics parameters. Uncertainties in the manipulator dynamics and actuator model are compensated by three-layer neural networks. External disturbances and approximation errors are counteracted by robust signals. The actuator controller is designed based on the backstepping scheme. Compared with the existing work, the proposed method considers the manipulator kinematics uncertainty, does not need the “linearity-in-parameters” assumption for the uncertain terms in the dynamics of manipulator and actuator, and guarantees the tracking error to be as small as desired. Finally, the performance of the proposed approach is illustrated by the simulation example.  相似文献   

12.
考虑一种电机驱动的单连杆机械臂系统在受到输出约束时的自适应有限时间H∞跟踪控制问题.一个有限时间有界H∞性能的新概念被提出,并结合障碍Lyapunov函数(BLF)、神经网络自适应技术、有限时间控制理论和H∞控制理论,提出了一种该系统在输出受限条件下的自适应神经有限时间有界H∞跟踪控制器设计方法,避免了许多有限时间控制...  相似文献   

13.
A new control design method based on signal compensation is proposed for a class of uncertain multi‐input multi‐output (MIMO) nonlinear systems in block‐triangular form with nonlinear uncertainties, unknown virtual control coefficients, strongly coupled interconnections, time‐varying delays, and external disturbances. By this method, the controller design is performed in a backstepping manner. At each step of backstepping procedure, a nominal virtual controller is first designed to get desired output tracking for the nominal disturbance‐free subsystem, and then a robust virtual compensator is designed to restrain the effect of the uncertainties, delays involved in the subsystem, and the couplings among the subsystems. The designed controller is linear and time‐invariant, so the explosion of complexity in the control law is avoid. It is proved that robust stability and robust practical tracking property of the closed‐loop system can be ensured, and the tracking errors can be made as small as desired. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
为解决柔性关节机器人在关节驱动力矩输出受限情况下的轨迹跟踪控制问题,提出一种基于奇异摄动理论的有界控制器.首先,利用奇异摄动理论将柔性关节机器人动力学模型解耦成快、慢两个子系统.然后,引入一类平滑饱和函数和径向基函数神经网络非线性逼近手段,依据反步策略设计了针对慢子系统的有界控制器.在快子系统的有界控制器设计中,通过关节弹性力矩跟踪误差的滤波处理加速系统的收敛.同时,在快、慢子系统控制器中均采用模糊逻辑实现控制参数的在线动态自调整.此外,结合李雅普诺夫稳定理论给出了严格的系统稳定性证明.最后,通过仿真对比实验验证了所提出控制方法的有效性和优越性.  相似文献   

15.
In this paper, both the closed-form dynamics and adaptive robust tracking control of a space robot with two-link flexible manipulators under unknown disturbances are developed. The dynamic model of the system is described with assumed modes approach and Lagrangian method. The flexible manipulators are represented as Euler–Bernoulli beams. Based on singular perturbation technique, the displacements/joint angles and flexible modes are modelled as slow and fast variables, respectively. A sliding mode control is designed for trajectories tracking of the slow subsystem under unknown but bounded disturbances, and an adaptive sliding mode control is derived for slow subsystem under unknown slowly time-varying disturbances. An optimal linear quadratic regulator method is proposed for the fast subsystem to damp out the vibrations of the flexible manipulators. Theoretical analysis validates the stability of the proposed composite controller. Numerical simulation results demonstrate the performance of the closed-loop flexible space robot system.  相似文献   

16.
This paper studies synchronization to a desired trajectory for multi‐agent systems with second‐order integrator dynamics and unknown nonlinearities and disturbances. The agents can have different dynamics and the treatment is for directed graphs with fixed communication topologies. The command generator or leader node dynamics is also nonlinear and unknown. Cooperative tracking adaptive controllers are designed based on each node maintaining a neural network parametric approximator and suitably tuning it to guarantee stability and performance. A Lyapunov‐based proof shows the ultimate boundedness of the tracking error. A simulation example with nodes having second‐order Lagrangian dynamics verifies the performance of the cooperative tracking adaptive controller. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, a new adaptive neuro controller for trajectory tracking is developed for robot manipulators without velocity measurements, taking into account the actuator constraints. The controller is based on structural knowledge of the dynamics of the robot and measurements of joint positions only. The system uncertainty, which may include payload variation, unknown nonlinearities and torque disturbances is estimated by a Chebyshev neural network (CNN). The adaptive controller represents an amalgamation of a filtering technique to generate pseudo filtered tracking error signals (for the elimination of velocity measurements) and the theory of function approximation using CNN. The proposed controller ensures the local asymptotic stability and the convergence of the position error to zero. The proposed controller is robust not only to structured uncertainty such as payload variation but also to unstructured one such as disturbances. Moreover the computational complexity of the proposed controller is reduced as compared to the multilayered neural network controller. The validity of the control scheme is shown by simulation results of a two-link robot manipulator. Simulation results are also provided to compare the proposed controller with a controller where velocity is estimated by finite difference methods using position measurements only.  相似文献   

18.
In this paper, a solution to the continuous output‐feedback finite‐time control problem is proposed for a class of second‐order MIMO nonlinear systems with disturbances. First, a continuous finite‐time controller is designed to stabilize system states at equilibrium points in finite time, which is proven correct by a constructive Lyapunov function. Next, because only the measured output is available for feedback, a continuous nonlinear observer is presented to reconstruct the total states in finite time and estimate the unknown disturbances. Then, a continuous output‐feedback finite‐time controller is proposed to track the desired trajectory accurately or alternatively converge to an arbitrarily small region in finite time. Finally, proposed methods are applied to robotic manipulators, and simulations are given to illustrate the applicability of the proposed control approach. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
In this study, we consider a boundary control problem of a flexible manipulator with input disturbances and output constraints, achieving pre‐set performance attributes on position tracking error and the deflection error at the end of the beam. The dynamics of the system are represented by partial differential equations (PDEs). With the Lyapunov's direct method, a boundary controller with disturbance observer is designed to regulate the angular position and suppress elastic vibration simultaneously. The proposed control scheme allows the errors to converge to an arbitrarily small residual set, with convergence rate larger than a pre‐specified value. Numerical simulations demonstrate the effectiveness of the proposed scheme.  相似文献   

20.
针对高阶非线性系统,开展自适应神经网络跟踪控制器设计,系统受到随机扰动的影响.首次把输入和输出约束问题引入到高阶系统的跟踪控制中,并假定系统动态是未知.首先借用高斯误差函数表达连续可微的非对称饱和模型以实现输入约束,和障碍Lyapunov函数保证系统输出受限;其次,针对高阶非线性系统,径向基函数(RBF)神经网络用来克服未知系统动态和随机扰动.在每一步的backstepping计算中,仅用到单一的自适应更新参数,从而克服了过参数问题;最后,基于Lyapunov稳定性理论提出自适应神经网络控制策略,并减少了学习参数.最终结果表明设计的控制器能保证所有闭环信号半全局最终一致有界,并能使跟踪误差收敛到零值小的邻域内.仿真研究进一步验证了提出方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号