首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrochemical reduction of N2 to NH3 provides an alternative strategy to replace the industrial Haber–Bosch process for facile and sustainable production of NH3. The development of efficient electrocatalysts for the nitrogen reduction reaction (NRR) is highly desired. Herein, a micelle‐assisted electrodeposition method is presented for the direct fabrication of porous Au film on Ni foam (pAu/NF). Benefiting from its interconnected porous architectonics, the pAu/NF exhibits superior NRR performance with a high NH3 yield rate of 9.42 µg h?1 cm?2 and a superior Faradaic efficiency of 13.36% at ?0.2 V versus reversible hydrogen electrode under the neutral electrolyte (0.1 m Na2SO4). The proposed micelle‐assisted electrodeposition strategy is highly valuable for future design of active NRR catalysts with desired compositions toward various electrocatalysis fields.  相似文献   

2.
Exploiting efficient electrocatalysts for electrochemical nitrogen reduction (NRR) is highly desired and deeply meaningful for realizing sustainable ammonia (NH3) production under ambient conditions. The Fe protein contains one [Fe4S4] cluster and P cluster, which play an important role for transfer electron during the nitrogen fixing of nitrogenases. Based on the understanding of nitrogenase, the rising‐star 2D iron thiophosphite (FePS3) nanomaterials may be highly active electrocatalysts toward NRR due to the ideal elemental composition. In this work, 2D FePS3 nanosheets are successfully synthesized by a facile salt‐templated method. The FePS3 nanosheets show better electrocatalytic NH3 yield and faradaic efficiency (FE) than Fe2S3, which demonstrates that the P element indeed improves the NRR activity of Fe‐S. Theoretically, Co incorporation not only effectively prompts the conductivity of FePS3, but also enhances the catalytic activities of Fe‐edge sites. Experimentally, Co‐doped FePS3 (Co‐FePS3) nanosheets exhibit a remarkable electrocatalytic performance toward NRR, such as high NH3 yield rate of 90.6 µg h?1 mgcat?1, high FE of 3.38%, and an excellent long‐term stability. Being the first theoretical and experimental report regarding FePS3‐based electrocatalyst toward NRR, this work represents an important beginning to the family of metal thiophosphite as advanced electrocatalysts toward NRR.  相似文献   

3.
The generation of ammonia, hydrogen production, and nitrogen purification are considered as energy intensive processes accompanied with large amounts of CO2 emission. An electrochemical method assisted by photoenergy is widely utilized for the chemical energy conversion. In this work, earth‐abundant iron pyrite (FeS2) nanocrystals grown on carbon fiber paper (FeS2/CFP) are found to be an electrochemical and photoactive catalyst for nitrogen reduction reaction under ambient temperature and pressure. The electrochemical results reveal that FeS2/CFP achieves a high Faradaic efficiency (FE) of ≈14.14% and NH3 yield rate of ≈0.096 µg min?1 at ?0.6 V versus RHE electrode in 0.25 m LiClO4. During the electrochemical catalytic reaction, the crystal structure of FeS2/CFP remains in the cubic pyrite phase, as analyzed by in situ X‐ray diffraction measurements. With near‐infrared laser irradiation (808 nm), the NH3 yield rate of the FeS2/CFP catalyst can be slightly improved to 0.1 µg min?1 with high FE of 14.57%. Furthermore, density functional theory calculations demonstrate that the N2 molecule has strong chemical adsorption energy on the iron atom of FeS2. Overall, iron pyrite‐based materials have proven to be a potential electrocatalyst with photoactive behavior for ammonia production in practical applications.  相似文献   

4.
Electrocatalytic nitrogen reduction reaction (NRR) is a promising process relative to energy-intensive Haber–Bosch process. While conventional electrocatalysts underperform with sluggish paths, achieving dissociation of N2 brings the key challenge for enhancing NRR. This study proposes an effective surface chalcogenation strategy to improve the NRR performance of pristine metal nanocrystals (NCs). Surprisingly, the NH3 yield and Faraday efficiency (FE) (175.6 ± 23.6 mg h–1 g–1Rh and 13.3 ± 0.4%) of Rh-Se NCs is significantly enhanced by 16 and 15 times, respectively. Detailed investigations show that the superior activity and high FE are attributed to the effect of surface chalcogenation, which not only can decrease the apparent activation energy, but also inhibit the occurrence of the hydrogen evolution reaction (HER) process. Theoretical calculations reveal that the strong interface strain effect within core@shell system induces a critical redox inversion, resulting in a rather low valence state of Rh and Se surface sites. Such strong correlation indicates an efficient electron-transfer minimizing NRR barrier. Significantly, the surface chalcogenation strategy is general, which can extend to create other NRR metal electrocatalysts with enhanced performance. This strategy open a new avenue for future NH3 production for breakthrough in the bottleneck of NRR.  相似文献   

5.
The ambient electrochemical N2 reduction reaction (NRR) is a future approach for the artificial NH3 synthesis to overcome the problems of high-energy consumption and environmental pollution by Haber–Bosch technology. However, the challenge of N2 activation on a catalyst surface and the competitive hydrogen evolution reaction make the current NRR unsatisfied. Herein, this work demonstrates that NbB2 nanoflakes (NFs) exhibit excellent selectivity and durability in NRR, which produces NH3 with a production rate of 30.5 µg h−1 mgcat−1 and a super-high Faraday efficiency (FE) of 40.2%. The high-selective NH3 production is attributed to the large amount of active B vacancies on the surface of NbB2 NFs. Density functional theory calculations suggest that the multiple atomic adsorption of N2 on both unsaturated Nb and B atoms results in a significantly stretched N2 molecule. The weakened NN triple bonds are easier to be broken for a biased NH3 production. The diatomic catalysis is a future approach for NRR as it shows a special N2 adsorption mode that can be well engineered.  相似文献   

6.
It is an important issue that exposed active nitrogen atoms (e.g., edge or amino N atoms) in graphitic carbon nitride (g‐C3N4) could participate in ammonia (NH3) synthesis during the photocatalytic nitrogen reduction reaction (NRR). Herein, the experimental results in this work demonstrate that the exposed active N atoms in g‐C3N4 nanosheets can indeed be hydrogenated and contribute to NH3 synthesis during the visible‐light photocatalytic NRR. However, these exposed N atoms can be firmly stabilized through forming B? N? C coordination by means of B‐doping in g‐C3N4 nanosheets (BCN) with a B‐doping content of 13.8 wt%. Moreover, the formed B? N? C coordination in g‐C3N4 not only effectively enhances the visible‐light harvesting and suppresses the recombination of photogenerated carriers in g‐C3N4, but also acts as the catalytic active site for N2 adsorption, activation, and hydrogenation. Consequently, the as‐synthesized BCN exhibits high visible‐light‐driven photocatalytic NRR activity, affording an NH3 yield rate of 313.9 µmol g?1 h?1, nearly 10 times of that for pristine g‐C3N4. This work would be helpful for designing and developing high‐efficiency metal‐free NRR catalysts for visible‐light‐driven photocatalytic NH3 synthesis.  相似文献   

7.
Electrochemical synthesis has garnered attention as a promising alternative to the traditional Haber–Bosch process to enable the generation of ammonia (NH3) under ambient conditions. Current electrocatalysts for the nitrogen reduction reaction (NRR) to produce NH3 are comprised of noble metals or transitional metals. Here, an efficient metal‐free catalyst (BCN) is demonstrated without precious component and can be easily fabricated by pyrolysis of organic precursor. Both theoretical calculations and experiments confirm that the doped B? N pairs are the active triggers and the edge carbon atoms near to B? N pairs are the active sites toward the NRR. This doping strategy can provide sufficient active sites while retarding the competing hydrogen evolution reaction (HER) process; thus, NRR with high NH3 formation rate (7.75 µg h?1 mgcat. ?1) and excellent Faradaic efficiency (13.79%) are achieved at ?0.3 V versus reversible hydrogen electrode (RHE), exceeding the performance of most of the metallic catalysts.  相似文献   

8.
As the N?N bond in N2 is one of the strongest bonds in chemistry, the fixation of N2 to ammonia is a kinetically complex and energetically challenging reaction and, up to now, its synthesis is still heavily relying on energy and capital intensive Haber–Bosch process (150–350 atm, 350–550 °C), wherein the input of H2 and energy are largely derived from fossil fuels and thus result in large amount of CO2 emission. In this paper, it is demonstrated that by using Au sub‐nanoclusters (≈0.5 nm ) embedded on TiO2 (Au loading is 1.542 wt%), the electrocatalytic N2 reduction reaction (NRR) is indeed possible at ambient condition. Unexpectedly, NRR with very high and stable production yield (NH3: 21.4 µg h?1 mg?1cat., Faradaic efficiency: 8.11%) and good selectivity is achieved at ?0.2 V versus RHE, which is much higher than that of the best results for N2 fixation under ambient conditions, and even comparable to the yield and activation energy under high temperatures and/or pressures. As isolated precious metal active centers dispersed onto oxide supports provide a well‐defined system, the special structure of atomic Au cluster would promote other important reactions besides NRR for water splitting, fuel cells, and other electrochemical devices.  相似文献   

9.
The discovery of stable and noble‐metal‐free catalysts toward efficient electrochemical reduction of nitrogen (N2) to ammonia (NH3) is highly desired and significantly critical for the earth nitrogen cycle. Here, based on the theoretical predictions, MoS2 is first utilized to catalyze the N2 reduction reaction (NRR) under room temperature and atmospheric pressure. Electrochemical tests reveal that such catalyst achieves a high Faradaic efficiency (1.17%) and NH3 yield (8.08 × 10?11 mol s?1 cm?1) at ?0.5 V versus reversible hydrogen electrode in 0.1 m Na2SO4. Even in acidic conditions, where strong hydrogen evolution reaction occurs, MoS2 is still active for the NRR. This work represents an important addition to the growing family of transition‐metal‐based catalysts with advanced performance in NRR.  相似文献   

10.
Li metal is the optimal choice as an anode due to its high theoretical capacity, but it suffers from severe dendrite growth, especially at high current rates. Here, an ionic gradient and lithiophilic inter‐phase film is developed, which promises to produce a durable and high‐rate Li‐metal anode. The film, containing an ionic‐conductive Li0.33La0.56TiO3 nanofiber (NF) layer on the top and a thin lithiophilic Al2O3 NF layer on the bottom, is fabricated with a sol–gel electrospinning method followed by sintering. During cycling, the top layer forms a spatially homogenous ionic field distribution over the anode, while the bottom layer reduces the driving force of Li‐dendrite formation by decreasing the nucleation barrier, enabling dendrite‐free plating‐stripping behavior over 1000 h at a high current density of 5 mA cm?2. Remarkably, full cells of Li//LiNi0.8Co0.15Al0.05O2 exhibit a high capacity of 133.3 mA h g?1 at 5 C over 150 cycles, contributing a step forward for high‐rate Li‐metal anodes.  相似文献   

11.
Golden bristlegrass‐like unique nanostructures comprising reduced graphene oxide (rGO) matrixed nanofibers entangled with bamboo‐like N‐doped carbon nanotubes (CNTs) containing CoSe2 nanocrystals at each node (denoted as N‐CNT/rGO/CoSe2 NF) are designed as anodes for high‐rate sodium‐ion batteries (SIBs). Bamboo‐like N‐doped CNTs (N‐CNTs) are successfully generated on the rGO matrixed nanofiber surface, between rGO sheets and mesopores, and interconnected chemically with homogeneously distributed rGO sheets. The defects in the N‐CNTs formed by a simple etching process allow the complete phase conversion of Co into CoSe2 through the efficient penetration of H2Se gas inside the CNT walls. The N‐CNTs bridge the vertical defects for electron transfer in the rGO sheet layers and increase the distance between the rGO sheets during cycles. The discharge capacity of N‐CNT/rGO/CoSe2 NF after the 10 000th cycle at an extremely high current density of 10 A g?1 is 264 mA h g?1, and the capacity retention measured at the 100th cycle is 89%. N‐CNT/rGO/CoSe2 NF has final discharge capacities of 395, 363, 328, 304, 283, 263, 246, 223, 197, 171, and 151 mA h g?1 at current densities of 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 A g?1, respectively.  相似文献   

12.
Transition metal hydro/oxides (TMH/Os) are treated as the most promising alternative supercapacitor electrodes thanks to their high theoretical capacitance due to the various oxidation states and abundant cheap resources of TMH/Os. However, the poor conductivity and logy reaction kinetics of TMH/Os severely restrict their practical application. Herein, hierarchical core–shell P‐Ni(OH)2@Co(OH)2 micro/nanostructures are in situ grown on conductive Ni foam (P‐Ni(OH)2@Co(OH)2/NF) through a facile stepwise hydrothermal process. The unique heterostructure composed of P‐Ni(OH)2 rods and Co(OH)2 nanoflakes boost the charge transportation and provide abundant active sites when used as the intergrated cathode for supercapacitors. It delivers an ultrahigh areal specific capacitance of 4.4 C cm?2 at 1 mA cm?2 and the capacitance can maintain 91% after 10 000 cycles, showing an ultralong cycle life. Additionally, a hybrid supercapacitor composed with P‐Ni(OH)2@Co(OH)2/NF cathode and Fe2O3/CC anode shows a wider voltage window of 1.6 V, a remarkable energy density of 0.21 mWh cm?2 at the power density of 0.8 mW cm?2, and outstanding cycling stability with about 81% capacitance retention after 5000 cycles. This innovative study not only supplies a newfashioned electronic apparatus with high‐energy density and cycling stability but offers a fresh reference and enlightenment for synthesizing advanced integrated electrodes for high‐performance hybrid supercapacitors.  相似文献   

13.
Electrochemical conversion of nitrogen (N2) into value-added ammonia (NH3) is highly desirable yet formidably challenging due to the extreme inertness of the N2 molecule, which makes the development of a robust electrocatalyst prerequisite. Herein, a new class of bullet-like M-Te (M = Ru, Rh, Ir) glassy porous nanorods (PNRs) is reported as excellent electrocatalysts for N2 reduction reaction (NRR). The optimized IrTe4 PNRs present superior activity with the highest NH3 yield rate (51.1 µg h−1 mg−1cat.) and Faraday efficiency (15.3%), as well as long-term stability of up to 20 consecutive cycles, making them among the most active NRR electrocatalysts reported to date. Both the N2 temperature-programmed desorption and valence band X-ray photoelectron spectroscopy data show that the strong chemical adsorption of N2 is the key for enhancing the NRR and suppressing the hydrogen evolution reaction of IrTe4 PNRs. Density functional theory calculations comprehensively identify that the superior adsorption strength of IrTe4 adsorptions originates from the synergistic collaboration between electron-rich Ir and the highly electroactive surrounding Te atoms. The optimal adsorption of both N2 and H2O in alkaline media guarantees the superior consecutive NRR process. This work opens a new avenue for designing high-performance NRR electrocatalysts based on glassy materials.  相似文献   

14.
The electrochemical reduction of N2 into NH3 production under ambient conditions represents an attractive prospect for the fixation of N2. However, this process suffers from low yield rate of NH3 over reported electrocatalysts. In this work, a record‐high activity for N2 electrochemical reduction over Ru single atoms distributed on nitrogen‐doped carbon (Ru SAs/N‐C) is reported. At ?0.2 V versus reversible hydrogen electrode, Ru SAs/N‐C achieves a Faradaic efficiency of 29.6% for NH3 production with partial current density of ?0.13 mA cm?2. Notably, the yield rate of Ru SAs/N‐C reaches 120.9 , which is one order of magnitude higher than the highest value ever reported. This work not only develops a superior electrocatalyst for NH3 production, but also provides a guideline for the rational design of highly active and robust single‐atom catalysts.  相似文献   

15.
Novel room‐temperature pathways to BaTiO3 nanocrystals have been recently developed, which stand in contrast to traditional high‐temperature methods. Peptide‐assisted, bio‐facilitated routes have been developed for low‐temperature nanocrystal growth, in addition to two low‐temperature routes completely independent of biomolecules. These innovative methods lay the groundwork for the facile production of nanoscale BaTiO3 in economical and energy‐efficient ways.  相似文献   

16.
Organic–inorganic halide perovskites are promising photodetector materials due to their strong absorption, large carrier mobility, and easily tunable bandgap. Up to now, perovskite photodetectors are mainly based on polycrystalline thin films, which have some undesired properties such as large defective grain boundaries hindering the further improvement of the detector performance. Here, perovskite thin‐single‐crystal (TSC) photodetectors are fabricated with a vertical p–i–n structure. Due to the absence of grain‐boundaries, the trap densities of TSCs are 10–100 folds lower than that of polycrystalline thin films. The photodetectors based on CH3NH3PbBr3 and CH3NH3PbI3 TSCs show low noise of 1–2 fA Hz?1/2, yielding a high specific detectivity of 1.5 × 1013 cm Hz1/2 W?1. The absence of grain boundaries reduces charge recombination and enables a linear response under strong light, superior to polycrystalline photodetectors. The CH3NH3PbBr3 photodetectors show a linear response to green light from 0.35 pW cm?2 to 2.1 W cm?2, corresponding to a linear dynamic range of 256 dB.  相似文献   

17.
Developing non‐noble‐metal electrocatalysts with high activity and low cost for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is of paramount importance for improving the generation of H2 fuel by electrocatalytic water‐splitting. This study puts forward a new N‐anion‐decorated Ni3S2 material synthesized by a simple one‐step calcination route, acting as a superior bifunctional electrocatalyst for the OER/HER for the first time. The introduction of N anions significantly modifies the morphology and electronic structure of Ni3S2, bringing high surface active sites exposure, enhanced electrical conductivity, optimal HER Gibbs free‐energy (ΔGH*), and water adsorption energy change (ΔGH2O*). Remarkably, the obtained N‐Ni3S2/NF 3D electrode exhibits extremely low overpotentials of 330 and 110 mV to reach a current density of 100 and 10 mA cm?2 for the OER and HER in 1.0 m KOH, respectively. Moreover, an overall water‐splitting device comprising this electrode delivers a current density of 10 mA cm?2 at a very low cell voltage of 1.48 V. Our finding introduces a new way to design advanced bifunctional catalysts for water splitting.  相似文献   

18.
Electrochemical nitrogen reduction reaction (NRR) under ambient conditions provides an avenue to produce carbon‐free hydrogen carriers. However, the selectivity and activity of NRR are still hindered by the sluggish reaction kinetics. Nitrogen Vacancies on transition metal nitrides are considered as one of the most ideal active sites for NRR by virtue of their unique vacancy properties such as appropriate adsorption energy to dinitrogen molecule. However, their catalytic performance is usually limited by the unstable feature. Herein, a new 2D layered W2N3 nanosheet is prepared and the nitrogen vacancies are demonstrated to be active for electrochemical NRR with a steady ammonia production rate of 11.66 ± 0.98 µg h?1 mgcata?1 (3.80 ± 0.32 × 10?11 mol cm?2 s?1) and Faradaic efficiency of 11.67 ± 0.93% at ?0.2 V versus reversible hydrogen electrode for 12 cycles (24 h). A series of ex situ synchrotron‐based characterizations prove that the nitrogen vacancies on 2D W2N3 are stable by virtue of the high valence state of tungsten atoms and 2D confinement effect. Density function theory calculations suggest that nitrogen vacancies on W2N3 can provide an electron‐deficient environment which not only facilitates nitrogen adsorption, but also lowers the thermodynamic limiting potential of NRR.  相似文献   

19.
Developing nonprecious oxygen evolution electrocatalysts that can work well at large current densities is of primary importance in a viable water‐splitting technology. Herein, a facile ultrafast (5 s) synthetic approach is reported that produces a novel, efficient, non‐noble metal oxygen‐evolution nano‐electrocatalyst that is composed of amorphous Ni–Fe bimetallic hydroxide film‐coated, nickel foam (NF)‐supported, Ni3S2 nanosheet arrays. The composite nanomaterial (denoted as Ni‐Fe‐OH@Ni3S2/NF) shows highly efficient electrocatalytic activity toward oxygen evolution reaction (OER) at large current densities, even in the order of 1000 mA cm?2. Ni‐Fe‐OH@Ni3S2/NF also gives an excellent catalytic stability toward OER both in 1 m KOH solution and in 30 wt% KOH solution. Further experimental results indicate that the effective integration of high catalytic reactivity, high structural stability, and high electronic conductivity into a single material system makes Ni‐Fe‐OH@Ni3S2/NF a remarkable catalytic ability for OER at large current densities.  相似文献   

20.
The design of cost‐efficient earth‐abundant catalysts with superior performance for the electrochemical water splitting is highly desirable. Herein, a general strategy for fabricating superior bifunctional water splitting electrodes is reported, where cost‐efficient earth‐abundant ultrathin Ni‐based nanosheets arrays are directly grown on nickel foam (NF). The newly created Ni‐based nanosheets@NF exhibit unique features of ultrathin building block, 3D hierarchical structure, and alloy effect with the optimized Ni5Fe layered double hydroxide@NF (Ni5Fe LDH@NF) exhibiting low overpotentials of 210 and 133 mV toward both oxygen evolution reaction and hydrogen evolution reaction at 10 mA cm?2 in alkaline condition, respectively. More significantly, when applying as the bifunctional overall water splitting electrocatalyst, the Ni5Fe LDH@NF shows an appealing potential of 1.59 V at 10 mA cm?2 and also superior durability at the very high current density of 50 mA cm?2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号