首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An aeroelastic model for wind turbine blades derived from the unsteady Navier‐Stokes equations and a mode shape–based structural dynamics model are presented. For turbulent flows, the system is closed with the Spalart‐Allmaras turbulence model. The computation times for the aerodynamic solution are significantly reduced using the harmonic balance method compared to a time‐accurate solution. This model is significantly more robust than standard aeroelastic codes that rely on blade element momentum theory to determine the aerodynamic forces. Comparisons with published results for the Caradonna‐Tung rotor in hover and the classical AGARD 445.6 flutter case are provided to validate the aerodynamic model and aeroelastic model, respectively. For wind turbines, flutter of the 1.5 MW WindPACT blade is considered. The results predict that the first flapwise and edgewise modes dominate flutter at the rotor speeds considered.  相似文献   

2.
Modern offshore turbine blades can be designed for high fatigue life and damage tolerance to avoid excessive maintenance and therefore significantly reduce the overall cost of offshore wind power. An aeroelastic design strategy for large wind turbine blades is presented and demonstrated for a 100 m blade. High fidelity analysis techniques like 3D finite element modeling are used alongside beam models of wind turbine blades to characterize the resulting designs in terms of their aeroelastic performance as well as their ability to resist damage growth. This study considers a common damage type for wind turbine blades, the bond line failure, and explores the damage tolerance of the designs to gain insight into how to improve bond line failure through aeroelastic design. Flat‐back airfoils are also explored to improve the damage tolerance performance of trailing‐edge bond line failures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents the development of a computational aeroelastic tool for the analysis of performance, response and stability of horizontal‐axis wind turbines. A nonlinear beam model for blades structural dynamics is coupled with a state‐space model for unsteady sectional aerodynamic loads, including dynamic stall effects. Several computational fluid dynamics structural dynamics coupling approaches are investigated to take into account rotor wake inflow influence on downwash, all based on a Boundary Element Method for the solution of incompressible, potential, attached flows. Sectional steady aerodynamic coefficients are extended to high angles of attack in order to characterize wind turbine operations in deep stall regimes. The Galerkin method is applied to the resulting aeroelastic differential system. In this context, a novel approach for the spatial integration of additional aerodynamic states, related to wake vorticity and dynamic stall, is introduced and assessed. Steady‐periodic blade responses are evaluated by a harmonic balance approach, whilst a standard eigenproblem is solved for aeroelastic stability analyses. Drawbacks and potentialities of the proposed model are investigated through numerical and experimental comparisons, with particular attention to rotor blades unsteady aerodynamic modelling issues. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Research has proven that the performance of a horizontal axis wind turbine (HAWTs) can be increased significantly by the application of a diffuser. It serves as a power augmented feature to draw higher wind flow toward the HAWT. However, research on integrating a diffuser onto vertical axis wind turbines (VAWTs) is scant, where most of the available power augmentation devices used for VAWTs are the convergent duct, deflector plate, shroud, and guide vanes which are placed in a proper configuration at the upwind. In this paper, laboratory tests and computational simulations have been carried out to study the impacts of a downwind diffuser on the performance of a VAWT. The diffuser is designed with the absence of a concentrator or flange and is placed downwind of the VAWT. Parametric computational fluid dynamics (CFD) studies were carried out for the downwind diffuser length and semi-opening angle. A five-bladed H-rotor was selected as the testing wind turbine, whereas the diffuser used was made up of flat plates. Both simulations and experiment results are consistent. From the experiments, it was found that a downwind diffuser increases the VAWT performance remarkably. The diffuser-augmented VAWT produced an increment in the maximum coefficient of power of 31.42% at the TSR 0.65 to 0.75. Moreover, the diffuser induced a better self-start ability on the VAWT. The simulation showed that the flow field at the diffuser promotes a flow expansion which created a lower-pressure region at downstream that accelerates the wind toward the VAWT, hence increasing the turbine performance significantly.  相似文献   

5.
A reduced‐order model for a wind turbine wake is sought from large eddy simulation data. Fluctuating velocity fields are combined in the correlation tensor to form the kernel of the proper orthogonal decomposition (POD). Proper orthogonal decomposition modes resulting from the decomposition represent the spatially coherent turbulence structures in the wind turbine wake; eigenvalues delineate the relative amount of turbulent kinetic energy associated with each mode. Back‐projecting the POD modes onto the velocity snapshots produces dynamic coefficients that express the amplitude of each mode in time. A reduced‐order model of the wind turbine wake (wakeROM) is defined through a series of polynomial parameters that quantify mode interaction and the evolution of each POD mode coefficients. The resulting system of ordinary differential equations models the wind turbine wake composed only of the large‐scale turbulent dynamics identified by the POD. Tikhonov regularization is used to recalibrate the dynamical system by adding additional constraints to the minimization seeking polynomial parameters, reducing error in the modeled mode coefficients. The wakeROM is periodically reinitialized with new initial conditions found by relating the incoming turbulent velocity to the POD mode coefficients through a series of open‐loop transfer functions. The wakeROM reproduces mode coefficients to within 25.2%, quantified through the normalized root‐mean‐square error.  A high‐level view of the modeling approach is provided as a platform to discuss promising research directions, alternate processes that could benefit stability and efficiency, and desired extensions of the wakeROM.  相似文献   

6.
Mitigating loads on a wind turbine rotor can reduce the cost of energy. Sweeping blades produces a structural coupling between flapwise bending and torsion, which can be used for load alleviation purposes. A multidisciplinary design optimization (MDO) problem is formulated including the blade sweep as a design variable. A multifidelity approach is used to confront the crucial effects of structural coupling on the estimation of the loads. During the MDO, ultimate and damage equivalent loads are estimated using steady‐state and frequency‐domain–based models, respectively. The final designs are verified against time‐domain full design load basis aeroelastic simulations to ensure that they comply with the constraints. A 10‐MW wind turbine blade is optimized by minimizing a cost function that includes mass and blade root flapwise fatigue loading. The design space is subjected to constraints that represent all the necessary requirements for standard design of wind turbines. Simultaneous aerodynamic and structural optimization is performed with and without sweep as a design variable. When sweep is included in the MDO process, further minimization of the cost function can be obtained. To show this achievement, a set of optimized straight blade designs is compared to a set of optimized swept blade designs. Relative to the respective optimized straight designs, the blade mass of the swept blades is reduced of an extra 2% to 3% and the blade root flapwise fatigue damage equivalent load by a further 8%.  相似文献   

7.
Anders Ahlstrm 《风能》2006,9(3):237-249
Most aeroelastic codes used today assume small blade deflections and application of loads on the undeflected structure. However, with the design of lighter and more flexible wind turbines, this assumption is not obvious. By scaling the system mass and stiffness properties equally, it is possible to compare wind turbines of different degrees of slenderness and at the same time keep system frequencies the same in an undeformed state. The developed model uses the commercial finite element system MSC. Marc, focused on non‐linear design and analysis, to predict the structural response. The aerodynamic model AERFORCE, used to transform the wind to loads on the blades, is a blade element momentum model. A comparison is made between different slenderness ratios in three wind conditions below rated wind speed. The results show that large blade deflections have a major influence on power production and the resulting structural loads and must be considered in the design of very slender turbines. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Bryant Le  John Andrews 《风能》2016,19(4):571-591
This paper presents an asset model for offshore wind turbine reliability accounting for the degradation, inspection and maintenance processes. The model was developed based on the Petri net method that effectively captures the stochastic nature of the dynamic processes through the use of appropriate statistical distributions. The versatility of the method allows the details of the degradation and maintenance operations to be incorporated in the model. In particular, there are dependent deterioration processes between wind turbine subsystems, complex maintenance rules and the incorporation of condition monitoring systems for early failure indication to enable replacement prior to failure. The purposes of the model are to predict the future condition of wind turbine components and to investigate the effect of a specified maintenance strategy. The model outputs are statistics indicating the performance of the wind turbine components; these include the probability of being in different condition states, the expected number of maintenance actions and the average number and duration of system downtime under any maintenance strategy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Ozan Gzcü  Mathias Stolpe 《风能》2020,23(5):1317-1330
The wind turbine industry is designing large MW size turbines with very long blades, which exhibit large deflections during their operational life. These large deflections decrease the accuracy of linear models such as linear finite element and modal‐based models, in which the structure is represented by linear mode shapes. The aim of this study is to investigate the competence of the mode shapes to represent the large blade responses in normal operation load cases. For this purpose, blade deflections are projected onto the linear modal space, swept by mode shape vectors. The projection shows the contribution of each mode and the projection error. The blade deflections are calculated by a nonlinear aero‐servo‐elastic solver for power production fatigue load cases with normal turbulence. The mode shapes are calculated at the steady‐state deflected blade position computed at different wind speeds. Three reference turbine blades are used in the study to evaluate the effects of various blade design parameters such as length, stiffness, mass, and prebend. The results show that although the linear mode shapes can represent the flapwise and edgewise deflections accurately, axial and torsional deflections cannot be captured with good accuracy. The geometric nonlinear effects are more apparent in the latter directions. The results indicate that the blade deflections occur beyond the linear assumptions.  相似文献   

10.
A comparison of several incrementally complex methods for predicting wind turbine performance, aeroelastic behavior, and wakes is provided. Depending on a wind farm's design, wake interference can cause large power losses and increased turbulence levels within the farm. The goal is to employ modeling methods to reach an improved understanding of wake effects and to use this information to better optimize the layout of new wind farms. A critical decision faced by modelers is the fidelity of the model that is selected to perform simulations. The choice of model fidelity can affect the accuracy, but will also greatly impact the computational time and resource requirements for simulations. To help address this critical question, three modeling methods of varying fidelity have been developed side by side and are compared in this article. The models from low to high complexity are as follows: a blade element‐based method with a free‐vortex wake, an actuator disc‐based method, and a full rotor‐based method. Fluid/structure interfaces are developed for the aerodynamic modeling approaches that allow modeling of discrete blades and are then coupled with a multibody structural dynamics solver in order to perform an aeroelastic analysis. Similar methods have individually been tested by researchers, but we suggest that by developing a suite of models, they can be cross‐compared to grasp the subtleties of each method. The modeling methods are applied to the National Renewable Energy Laboratory Phase VI rotor to predict the turbine aerodynamic and structural loads and then also the wind velocities in the wake. The full rotor method provides the most accurate predictions at the turbine and the use of adaptive mesh refinement to capture the wake to 20 radii downstream is proven particularly successful. Though the full rotor method is unmatched by the lower fidelity methods in stalled conditions and detailed prediction of the downstream wake, there are other less complex conditions where these methods perform as accurately as the full rotor method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Wind turbine controllers are commonly designed on the basis of low‐order linear models to capture the aeroelastic wind turbine response due to control actions and disturbances. This paper characterizes the aeroelastic wind turbine dynamics that influence the open‐loop frequency response from generator torque and collective pitch control actions of a modern non‐floating wind turbine based on a high‐order linear model. The model is a linearization of a geometrically non‐linear finite beam element model coupled with an unsteady blade element momentum model of aerodynamic forces including effects of shed vorticity and dynamic stall. The main findings are that the lowest collective flap modes have limited influence on the response from generator torque to generator speed, due to large aerodynamic damping. The transfer function from collective pitch to generator speed is affected by two non‐minimum phase zeros below the frequency of the first drivetrain mode. To correctly predict the non‐minimum phase zeros, it is essential to include lateral tower and blade flap degrees of freedom. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A framework based on isogeometric analysis is presented for parametrizing a wind turbine rotor blade and evaluating its response. The framework consists of a multi‐fidelity approach for wind turbine rotor analysis. The aeroelastic loads are determined using a low‐fidelity model. The model is based on isogeometric approach to model both the structural and aerodynamic properties. The structural deformations are solved using an isogeometric formulation of geometrically exact 3D beam theory. The aerodynamic loads are calculated using a standard Blade Element Momentum(BEM) theory. Moreover, the aerodynamic loads calculated using BEM theory are modified to account for the change in the blade shape due to blade deformation. The aeroelastic loads are applied in finite element solver Nastran, and both the stress response and buckling response are extracted. Furthermore, the capabilities of Nastran are extended such that design dependent loads can be applied, resulting in correct aeroelastic sensitivities of Nastran responses, making this framework suitable for optimization. The framework is verified against results from the commercial codes FAST and GH Bladed, using the NREL 61.5m rotor blade as a baseline for comparison, showing good agreement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
风电场风电机组的接地设计   总被引:2,自引:0,他引:2  
较系统地介绍了风电场风电机组对接地电阻的要求、接地设计思路及方法,并提供实际工程中接地网布置图实例作为参考。  相似文献   

14.
A numerical tool for investigating the aeroelastic stability of a single wind turbine blade subjected to combined flap/lead–lag motion is presented. Its development is motivated by recent concern about destructive edgewise vibrations of modern stall‐controlled blades. The stability tool employs a finite element formulation to discretize in space the structural and aerodynamic governing equations. Unsteady aerodynamics is considered by means of the extended ONERA lift and drag models. The mathematical form of these models allows for a combined treatment of dynamics and aerodynamics through the introduction of a so‐called ‘aeroelastic beam element’. This is an extended two‐node beam element having both deformation and aerodynamic degrees of freedom. Several linear and non‐linear versions of the stability tool are available, differing in the way that instantaneous lift and/or drag is treated. In the linear case, stability is investigated through eigenvalue analysis. Time domain integration is employed for non‐linear stability analysis. Results are presented and discussed for a 17 m stall‐controlled blade. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Numerous experiments were conducted on an oscillating airfoil in a subsonic wind tunnel. The experiments involved measuring the surface pressure distribution when the model oscillated in two types of motion, pitch and plunge, at three different Reynolds numbers, 0.42, 0.63 and 0.84 million, and over a range of reduced frequencies, k = 0.03–0.09. The unsteady aerodynamic loads were calculated from the surface pressure measurements, 64 ports, along the chord for both upper and lower surfaces of the model. Particular emphasis was placed on the effects of different types of motion on the unsteady pressure distribution of the airfoil at pre‐stall, near‐stall and post‐stall conditions. It was found that variations of the pressure distribution and aerodynamic loads with angle of attack were strongly sensitive to the displacement, oscillation frequency and mean angle of attack. The width of the hysteresis loop, position of the ‘figure‐8 shape’ and slope of the pressure coefficient curve are influenced by both types of motion, pitch and plunge. The main difference between plunging and pitching motions is due to the presence of the pitch rate for the pitching motion case, which was absent in the plunging case. Pitch rate had the strongest influence on pressure data in the near‐stall and post‐stall conditions. The trend of increasing the width of the hysteresis loops of lift coefficients with changing reduced frequency was different in two motions in the pre‐stall and post‐stall regions. The aerodynamic damping was greater for the pitching case than for the plunging one at higher reduced frequencies due to the existence of the pitch rate in the pitching oscillation, which was reversed at lower reduced frequencies. In the near‐stall region, at higher reduced frequency, the dynamic stall angle for the pitching oscillation increased while for the plunging one the effect was minimal. Increasing the oscillation amplitude was more effective for the plunging motion than for the pitching one. The effects of surface grit roughness on the pressure signature for both types of motion were also investigated. Applying the surface roughness near the leading edge affected the performance of the airfoil significantly. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
风电机组模型及其在低电压穿越过程中的有效性认证   总被引:1,自引:0,他引:1  
介绍风电机组模型有效性研究的最新发展、认证过程和评价指标,以及机组模型的分类、组成和要求,并且对机组模型的发展方向以及测试和评价方法的发展方向提出了看法。  相似文献   

17.
基于风力机整机刚柔耦合模型,文章提出了一种叶片动态气弹扭转变形分析的新方法。该方法采用SIMPACK和AeroDyn软件联合数值仿真对风力机在几种恶劣风况下进行动力学分析,通过对分析结果的变换处理,进而得到叶片在复杂工况下的动态气弹变形数据。采用该方法,重点分析了叶片气弹扭转变形对风力机气动功率及气弹稳定性的影响。该方法为大型风电叶片的气弹特性评价以及气弹剪裁设计提供了一种新的技术手段。  相似文献   

18.
19.
A new wind turbine emulator (WTE) is presented, which is able to simulate the turbine power curves without using a closed loop control system. The state of the art emulators use DC or AC motors, closed loop controlled by processors with the turbine power curves recorded. The presented emulator has a DC voltage source, a power resistor and a DC motor with independent excitation. The motor power curve has a shape similar to a wind turbine power curve for a given wind speed; the wind speed variations can be emulated by the variations of the DC voltage source. The open loop emulator is completely different and new, because it works in open loop and does not require the presence of a processor.The following elements are included: the theoretical foundations of the emulator, the emulator power curves adjustment procedure to simulate a commercial wind turbine and the experimental tests.  相似文献   

20.
风电机组载荷计算的外部风速条件模拟研究   总被引:1,自引:0,他引:1  
针对大型风力发电机组设计中的风速条件进行了模拟研究,利用Bladed软件进行了仿真和载荷计算,研究内容包括风切变、塔影、上风向尾流、三维湍流、瞬时风速等建模问题.结合沈阳工业大学承担"863"项目--SUT-1000 MW级变速恒频风电机组的研制,进行了IEC标准下各级负载级别的载荷计算.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号