共查询到20条相似文献,搜索用时 15 毫秒
1.
Runwei Mo Zhengyu Lei Kening Sun David Rooney 《Advanced materials (Deerfield Beach, Fla.)》2014,26(13):2084-2088
2.
Sodium‐Ion Batteries: Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium‐Ion Batteries with Ultralong Cycle Life (Adv. Mater. 47/2015)
下载免费PDF全文

Hongshuai Hou Craig E. Banks Mingjun Jing Yan Zhang Xiaobo Ji 《Advanced materials (Deerfield Beach, Fla.)》2015,27(47):7895-7895
3.
4.
Yong Cheng Shaohua Wang Lin Zhou Limin Chang Wanqiang Liu Dongming Yin Zheng Yi Limin Wang 《Small (Weinheim an der Bergstrasse, Germany)》2020,16(26)
SnO2 has been considered as a promising anode material for lithium‐ion batteries (LIBs) and sodium ion batteries (SIBs), but challenging as well for the low‐reversible conversion reaction and coulombic efficiency. To address these issues, herein, SnO2 quantum dots (≈5 nm) embedded in porous N‐doped carbon matrix (SnO2/NC) are developed via a hydrothermal step combined with a self‐polymerization process at room temperature. The ultrasmall size in quantum dots can greatly shorten the ion diffusion distance and lower the internal strain, improving the conversion reaction efficiency and coulombic efficiency. The rich mesopores/micropores and highly conductive N‐doped carbon matrix can further enhance the overall conductivity and buffer effect of the composite. As a result, the optimized SnO2/NC‐2 composite for LIBs exhibits a high coulombic efficiency of 72.9%, a high discharge capacity of 1255.2 mAh g?1 at 0.1 A g?1 after 100 cycles and a long life‐span with a capacity of 753 mAh g?1 after 1500 cycles at 1 A g?1. The SnO2/NC‐2 composite also displays excellent performance for SIBs, delivering a superior discharge capacity of 212.6 mAh g?1 at 1 A g?1 after 3000 cycles. These excellent results can be of visible significance for the size effect of the uniform quantum dots. 相似文献
5.
Hongshuai Hou Craig E. Banks Mingjun Jing Yan Zhang Xiaobo Ji 《Advanced materials (Deerfield Beach, Fla.)》2015,27(47):7861-7866
6.
7.
Yen‐Ming Chen Shih‐Ting Hsu Yu‐Hsien Tseng Te‐Fu Yeh Sheng‐Shu Hou Jeng‐Shiung Jan Yuh‐Lang Lee Hsisheng Teng 《Small (Weinheim an der Bergstrasse, Germany)》2018,14(12)
This study uses graphene oxide quantum dots (GOQDs) to enhance the Li+‐ion mobility of a gel polymer electrolyte (GPE) for lithium‐ion batteries (LIBs). The GPE comprises a framework of poly(acrylonitrile‐co‐vinylacetate) blended with poly(methyl methacrylate) and a salt LiPF6 solvated in carbonate solvents. The GOQDs, which function as acceptors, are small (3?11 nm) and well dispersed in the polymer framework. The GOQDs suppress the formation of ion?solvent clusters and immobilize anions, affording the GPE a high ionic conductivity and a high Li+‐ion transference number (0.77). When assembled into Li|electrolyte|LiFePO4 batteries, the GPEs containing GOQDs preserve the battery capacity at high rates (up to 20 C) and exhibit 100% capacity retention after 500 charge?discharge cycles. Smaller GOQDs are more effective in GPE performance enhancement because of the higher dispersion of QDs. The minimization of both the ion?solvent clusters and degree of Li+‐ion solvation in the GPEs with GOQDs results in even plating and stripping of the Li‐metal anode; therefore, Li dendrite formation is suppressed during battery operation. This study demonstrates a strategy of using small GOQDs with tunable properties to effectively modulate ion?solvent coordination in GPEs and thus improve the performance and lifespan of LIBs. 相似文献
8.
《Small Methods》2017,1(6)
Graphene is intensively investigated in various energy storage and conversion systems such as fuel cells, batteries, and supercapacitors. Despite the exponential increase of the number of publications related with graphene, the practical application of graphene in energy storage and conversion still has many uncertainties, but the reason is rarely mentioned in the literature. Here, the scientific gap between graphene research and the key parameters in Li‐ion batteries and beyond is discussed, such as the electrochemical window, the electrode surface area, and the parasitic weight. Different insights are provided for graphene study in batteries that may inspire new ideas to address the practical challenges for large‐scale adoption of graphene in energy storage. 相似文献
9.
Xiaojun Wang Yongchang Liu Yijing Wang Lifang Jiao 《Small (Weinheim an der Bergstrasse, Germany)》2016,12(35):4865-4872
The design of sodium ion batteries is proposed based on the use of flexible membrane composed of ultrasmall transition metal oxides. In this paper, the preparation of CuO quantum dots (≈2 nm) delicately embedded in carbon nanofibers (denoted as 2‐CuO@C) with a thin film via a feasible electrospinning method is reported. The CuO content can be controlled by altering the synthetic conditions and is optimized to 54 wt%. As binder‐free anode for sodium ion batteries, 2‐CuO@C delivers an initial reversible capacity of 528 mA h g?1 at the current density of 100 mA g?1, an exceptional rate capability of 250 mA h g?1 at 5000 mA g?1, and an ultra‐stable capacity of 401 mA h g?1 after 500 cycles at 500 mA g?1. The enhancement of electrochemical performance is attributed to the unique structure of 2‐CuO@C, which offers a variety of advantages: highly conductive carbon matrix suppressing agglomeration of CuO grains, interconnected nanofibers ensuring short transport length for electrons, well‐dispersed CuO quantum dots leading to highly utilization rate, and good mechanical properties resulting in strong electrode integrity. 相似文献
10.
11.
Huaxin Liu Laiqiang Xu Hanyu Tu Zheng Luo Fangjun Zhu Wentao Deng Guoqiang Zou Hongshuai Hou Xiaobo Ji 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(33):2301275
Solid-state polymer electrolytes are highly anticipated for next generation lithium ion batteries with enhanced safety and energy density. However, a major disadvantage of polymer electrolytes is their low ionic conductivity at room temperature. In order to enhance the ionic conductivity, here, graphene quantum dots (GQDs) are employed to improve the poly (ethylene oxide) (PEO) based electrolyte. Owing to the increased amorphous areas of PEO and mobility of Li+, GQDs modified composite polymer electrolytes achieved high ionic conductivity and favorable lithium ion transference numbers. Significantly, the abundant hydroxyl groups and amino groups originated from GQDs can serve as Lewis base sites and interact with lithium ions, thus promoting the dissociation of lithium salts and providing more ion pathways. Moreover, lithium dendrite is suppressed, associated with high transference number, enhanced mechanical properties and steady interface stability. It is further observed that all solid-state lithium batteries assembled with GQDs modified composite polymer electrolytes display excellent rate performance and cycling stability. 相似文献
12.
Jiangfeng Ni Shidong Fu Yifei Yuan Lu Ma Yu Jiang Liang Li Jun Lu 《Advanced materials (Deerfield Beach, Fla.)》2018,30(6)
Sodium‐ion batteries (SIBs) offer a promise of a scalable, low‐cost, and environmentally benign means of renewable energy storage. However, the low capacity and poor rate capability of anode materials present an unavoidable challenge. In this work, it is demonstrated that surface phosphorylated TiO2 nanotube arrays grown on Ti substrate can be efficient anode materials for SIBs. Fabrication of the phosphorylated nanoarray film is based on the electrochemical anodization of Ti metal in NH4F solution and subsequent phosphorylation using sodium hypophosphite. The phosphorylated TiO2 nanotube arrays afford a reversible capacity of 334 mA h g?1 at 67 mA g?1, a superior rate capability of 147 mA h g?1 at 3350 mA g?1, and a stable cycle performance up to 1000 cycles. In situ X‐ray diffraction and transmission electron microscopy reveal the near‐zero strain response and robust mechanical behavior of the TiO2 host upon (de)sodiation, suggesting its excellent structural stability in the Na+ storage application. 相似文献
13.
Hua Wang Pengfei Hu Jie Yang Guangming Gong Lin Guo Xiaodong Chen 《Advanced materials (Deerfield Beach, Fla.)》2015,27(14):2348-2354
14.
15.
Soo Min Hwang Jeong‐Sun Park Yongil Kim Wooseok Go Jinhyup Han Youngjin Kim Youngsik Kim 《Advanced materials (Deerfield Beach, Fla.)》2019,31(20)
Harvesting energy from natural resources is of significant interest because of their abundance and sustainability. Seawater is the most abundant natural resource on earth, covering two‐thirds of the surface. The rechargeable seawater battery is a new energy storage platform that enables interconversion of electrical energy and chemical energy by tapping into seawater as an infinite medium. Here, an overview of the research and development activities of seawater batteries toward practical applications is presented. Seawater batteries consist of anode and cathode compartments that are separated by a Na‐ion conducting membrane, which allows only Na+ ion transport between the two electrodes. The roles and drawbacks of the three key components, as well as the development concept and operation principles of the batteries on the basis of previous reports are covered. Moreover, the prototype manufacturing lines for mass production and automation, and potential applications, particularly in marine environments are introduced. Highlighting the importance of engineering the cell components, as well as optimizing the system level for a particular application and thereby successful market entry, the key issues to be resolved are discussed, so that the seawater battery can emerge as a promising alternative to existing rechargeable batteries. 相似文献
16.
17.
Quan Xu Jian‐Kun Sun Zhi‐Long Yu Ya‐Xia Yin Sen Xin Shu‐Hong Yu Yu‐Guo Guo 《Advanced materials (Deerfield Beach, Fla.)》2018,30(25)
SiOx is proposed as one of the most promising anodes for Li‐ion batteries (LIBs) for its advantageous capacity and stable Li uptake/release electrochemistry, yet its practical application is still a big challenge. Here encapsulation of SiOx nanoparticles into conductive graphene bubble film via a facile and scalable self‐assembly in solution is shown. The SiOx nanoparticles are closely wrapped in multilayered graphene to reconstruct a flake‐graphite‐like macrostructure, which promises uniform and agglomeration‐free distribution of SiOx in the carbon while ensures a high mechanical strength and a high tap density of the composite. The composites present unprecedented cycling stability and excellent rate capabilities upon Li storage, rendering an opportunity for its anode use in the next‐generation high‐energy LIBs. 相似文献
18.
Yang Liu Dandan He Yingjie Cheng Lin Li Zhansheng Lu Rui Liang Yangyang Fan Yun Qiao Shulei Chou 《Small (Weinheim an der Bergstrasse, Germany)》2020,16(11)
Prussian blue (PB) and its analogues are recognized as promising cathodes for rechargeable batteries intended for application in low‐cost and large‐scale electric energy storage. With respect to PB cathodes, however, their intrinsic crystal regularity, vacancies, and coordinated water will lead to low specific capacity and poor rate performance, impeding their application. Herein, nanocubic porous NaxFeFe(CN)6 coated with polydopamine (PDA) as a coupling layer to improve its electrochemical performance is reported, inspired by the excellent adhesive property of PDA. As a cathode for sodium‐ion batteries, the NaxFeFe(CN)6 electrode coupled with PDA delivers a reversible capacity of 93.8 mA h g?1 after 500 cycles at 0.2 A g?1, and a discharge capacity of 72.6 mA h g?1 at 5.0 A g?1. The sodium storage mechanism of this NaxFeFe(CN)6 coupled with PDA is revealed via in situ Raman spectroscopy. The first‐principles computational results indicate that FeII sites in PB prefer to couple with the robust PDA layer to stabilize the PB structure. Moreover, the sodium‐ion migration in the PB structure is enhanced after coating with PDA, thus improving the sodium storage properties. Both experiments and computational simulations present guidelines for the rational design of nanomaterials as electrodes for energy storage devices. 相似文献
19.
20.
Asif Mahmood Shuai Li Zeeshan Ali Hassina Tabassum Bingjun Zhu Zibin Liang Wei Meng Waseem Aftab Wenhan Guo Hao Zhang Muhammad Yousaf Song Gao Ruqiang Zou Yusheng Zhao 《Advanced materials (Deerfield Beach, Fla.)》2019,31(2)
The large‐scale application of sodium/potassium‐ion batteries is severely limited by the low and slow charge storage dynamics of electrode materials. The crystalline carbons exhibit poor insertion capability of large Na+/K+ ions, which limits the storage capability of Na/K batteries. Herein, porous S and N co‐doped thin carbon (S/N@C) with shell‐like (shell size ≈20–30 nm, shell wall ≈8–10 nm) morphology for enhanced Na+/K+ storage is presented. Thanks to the hollow structure and thin shell‐wall, S/N@C exhibits an excellent Na+/K+ storage capability with fast mass transport at higher current densities, leading to limited compromise over charge storage at high charge/discharge rates. The S/N@C delivers a high reversible capacity of 448 mAh g‐1 for Na battery, at the current density of 100 mA g‐1 and maintains a discharge capacity up to 337 mAh g‐1 at 1000 mA g‐1. Owing to shortened diffusion pathways, S/N@C delivers an unprecedented discharge capacity of 204 and 169 mAh g‐1 at extremely high current densities of 16 000 and 32 000 mA g‐1, respectively, with excellent reversible capacity for 4500 cycles. Moreover, S/N@C exhibits high K+ storage capability (320 mAh g‐1 at current density of 50 mA g‐1) and excellent cyclic life. 相似文献