首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developing highly efficient hydrogen evolution reaction (HER) catalysts in alkaline media is considered significant and valuable for water splitting. Herein, it is demonstrated that surface reorganization engineering by oxygen plasma engraving on electocatalysts successfully realizes a dramatically enhanced alkaline HER activity. Taking CoP nanowire arrays grown on carbon cloth (denoted as CoP NWs/CC) as an example, the oxygen plasma engraving can trigger moderate CoOx species formation on the surface of the CoP NWs/CC, which is visually verified by the X‐ray absorption fine structure, high‐resolution transmission electron microscopy, and energy‐dispersive spectrometer (EDS) mapping. Benefiting from the moderate CoOx species formed on the surface, which can promote the water dissociation in alkaline HER, the surface reorganization of the CoP NWs/CC realizes almost fourfold enhanced alkaline HER activity and a 180 mV decreased overpotential at 100 mA cm?2, compared with the pristine ones. More interestingly, this surface reorganization strategy by oxygen plasma engraving can also be effective to other electrocatalysts such as free‐standing CoP, Co4N, O‐CoSe2, and C‐CoSe2 nanowires, which verifies the universality of the strategy. This work thus opens up new avenues for designing alkaline HER electrocatalysts based on oxygen plasma engraving.  相似文献   

2.
Inhibiting CO formation can more directly address the problem of CO poisoning during methanol electro‐oxidation. In this study, 1D self‐supported porous PtAuP alloy nanotube arrays (ANTAs) are synthesized via a facile electro‐codeposition approach and present enhanced activity and improved resistance to CO poisoning through inhibiting CO formation (non‐CO pathway) during the methanol oxidation reaction in acidic medium. This well‐controlled Pt‐/transition metal‐/nonmetal ternary nanostructure exhibits a specific electroactivity twice as great as that of PtAu alloy nanotube arrays and Pt/C. At the same time, PtAuP ANTAs show a higher ratio of forward peak current density (If) to backward peak current density (Ib) (2.34) than PtAu ANTAs (1.27) and Pt/C (0.78). The prominent If/Ib value of PtAuP ANTAs indicates that most of the intermediate species are electro‐oxidized to carbon dioxide in the forward scan, which highlights the high electroactivity for methanol electro‐oxidation.  相似文献   

3.
Tailoring composition and morphology of electrocatalysts is of great importance in improving their catalytic performance. Herein, a salt‐templated strategy is proposed to construct novel multicomponent Co/CoxMy (M = P, N) hybrids with outstanding electrocatalytic performance for the oxygen evolution reaction (OER). The obtained Co/CoxMy hybrids present porous sheet‐like architecture consisting of many hierarchical secondary building‐units. The synthetic strategy depends on a facile and effective dissolution–recrystallization–pyrolysis process under NH3 atmosphere of the precursors, which does not involve any surfactant or long‐time hydrothermal pretreatment. That is different from the conventional methods for the synthesis of hierarchical nitrides/phosphides. Benefitting from unique composition/structure‐dependent merits, the Co/CoxMy hybrids as a typical Mott–Schottky electrocatalyst exhibit good OER performance in an alkaline medium compared with their counterparts, as evidenced by a low overpotential of 334 mV at 10 mA cm?2 and a small Tafel slope of 79.2 mV dec?1, as well as superior long‐term stability. More importantly, the Co/CoxMy+Pt/C achieves higher voltaic efficiency and several times longer cycle life than conventional RuO2+Pt/C catalysts in rechargeable Zn–air batteries. It is envisioned that the present work can provide a new avenue for the development of Mott–Schottky electrocatalysts for sustainable energy storage.  相似文献   

4.
The synthesis of Pt nanotubes catalysts remains a substantial challenge, especially for those with both sub‐nanometer wall thickness and micrometer‐scale length characteristics. Combining techniques of insulin fibril template with Pd nanowire template, numerous Pt nanotubes with diameter of 5.5 nm, tube‐length of several micrometers, and ultrathin wall thickness of 1 nm are assembled. These tubular catalysts with both open ends deliver electrochemical active surface area (ECSA) of 91.43 m2 gpt?1 which results from multiple Pt atoms exposed on the inner and outer surfaces that doubled Pt atoms can participate in catalytic reactions, further with enhanced electrocatalytic performance for oxygen reduction reaction (ORR). The ultrafine Pt nanotubes represent a class of hollow nanostructure with increased Pt‐utilization and large ECSA, which is regarded as a type of cost‐effective catalysts for ORR.  相似文献   

5.
The development of Pt‐free electrocatalysts for the hydrogen evolution reaction (HER) recently is a focus of great interest. While several strategies are developed to control the structural properties of non‐Pt catalysts and boost their electrocatalytic activities for the HER, the generation of highly reactive defects or interfaces by combining a metal with other metals, or with metal oxides/sulfides, can lead to notably enhanced catalytic performance. Herein, the preparation of cactus‐like hollow Cu2‐x S@Ru nanoplates (NPs) that contain metal/metal sulfide heterojunctions and show excellent catalytic activity and durability for the HER in alkaline media is reported. The initial formation of Ru islands on presynthesized Cu1.94S NPs, via cation exchange between three Cu+ ions and one Ru3+, induces the growth of the Ru phase, which is concomitant with the dissolution of the Cu1.94S nanotemplate, culminating in the formation of a hollow nanostructure with numerous thin Ru pillars. Hollow Cu2‐x S@Ru NPs exhibit a small overpotential of 82 mV at a current density of ?10 mA cm?2 and a low Tafel slope of 48 mV dec?1 under alkaline conditions; this catalyst is among state‐of‐the‐art HER electrocatalysts in alkaline media. The excellent performance of hollow Cu2‐x S@Ru NPs originates from the facile dissociation of water in the Volmer step.  相似文献   

6.
Transition metal carbide compound has been extensively investigated as a catalyst for hydrogenation, for example, due to its noble metal‐like properties. Herein a facile synthetic strategy is applied to control the thickness of atomic‐layer Pt clusters strongly anchored on N‐doped Mo2C nanorods (Pt/N‐Mo2C) and it is found that the Pt atomic layers modify Mo2C function as a high‐performance and robust catalyst for hydrogen evolution. The optimized 1.08 wt% Pt/N‐Mo2C exhibits 25‐fold, 10‐fold, and 15‐fold better mass activity than the benchmark 20 wt% Pt/C in neutral, acidic, and alkaline media, respectively. This catalyst also represents an extremely low overpotential of ?8.3 mV at current density of 10 mA cm?2, much better than the majority of reported electrocatalysts and even the commercial reference catalyst (20 wt%) Pt/C. Furthermore, it exhibits an outstanding long‐term operational durability of 120 h. Theoretical calculation predicts that the ultrathin layer of Pt clusters on Mo‐Mo2C yields the lowest absolute value of ΔGH*. Experimental results demonstrate that the atomic layer of Pt clusters anchored on Mo2C substrate greatly enhances electron and mass transportation efficiency and structural stability. These findings could provide the foundation for developing highly effective and scalable hydrogen evolution catalysts.  相似文献   

7.
Iron–nitrogen–carbon materials (Fe–N–C) are known for their excellent oxygen reduction reaction (ORR) performance. Unfortunately, they generally show a laggard oxygen evolution reaction (OER) activity, which results in a lethargic charging performance in rechargeable Zn–air batteries. Here porous S‐doped Fe–N–C nanosheets are innovatively synthesized utilizing a scalable FeCl3‐encapsulated‐porphyra precursor pyrolysis strategy. The obtained electrocatalyst exhibits ultrahigh ORR activity (E1/2 = 0.84 V vs reversible hydrogen electrode) and impressive OER performance (Ej = 10 = 1.64 V). The potential gap (ΔE = Ej = 10 ? E1/2) is 0.80 V, outperforming that of most highly active bifunctional electrocatalysts reported to date. Furthermore, the key role of S involved in the atomically dispersed Fe–Nx species on the enhanced ORR and OER activities is expounded for the first time by ultrasound‐assisted extraction of the exclusive S source (taurine) from porphyra. Moreover, the assembled rechargeable Zn–air battery comprising this bifunctional electrocatalyst exhibits higher power density (225.1 mW cm?2) and lower charging–discharging overpotential (1.00 V, 100 mA cm?2 compared to Pt/C + RuO2 catalyst). The design strategy can expand the utilization of earth‐abundant biomaterial‐derived catalysts, and the mechanism investigations of S doping on the structure–activity relationship can inspire the progress of other functional electrocatalysts.  相似文献   

8.
Nowadays, the state‐of‐the‐art electrocatalysts for hydrogen evolution reaction (HER) are platinum group metals. Nonetheless, Pt‐based catalysts show decreased HER activity in alkaline media compared with that in acidic media due to the sluggish dissociation process of H2O on the surface of Pt. With a cost 1/25 that of Pt, Ru demonstrates a favorable dissociation kinetics of absorbed H2O. Herein, crystalline Ru0.33Se nanoparticles are decorated onto TiO2 nanotube arrays (TNAs) to fabricate Ru0.33Se @ TNA hybrid for HER. Owing to the large‐specific surface area, Ru0.33Se nanoparticles are freely distributed and the particle aggregation is eliminated, providing more active sites. The contracted electron transport pathway rendered by TiO2 nanotubes and the synergistic effect at the interface significantly improve the charge transfer efficiency in the hybrid catalyst. Compared with Ru0.33Se nanoparticles deposited directly on the Ti foil (Ru0.33Se/Ti) or carbon cloth (Ru0.33Se/CC), Ru0.33Se @ TNA shows an enhanced catalytic activity with an overpotential of 57 mV to afford a current density of 10 mA cm?2, a Tafel slope of 50.0 mV dec?1. Furthermore, the hybrid catalyst also exhibits an outstanding catalytic stability. The strategy here opens up a new synthetic avenue to the design of highly efficient hybrid electrocatalysts for hydrogen production.  相似文献   

9.
Surface modification of electrocatalysts to obtain new or improved electrocatalytic performance is currently the main strategy for designing advanced nanocatalysts. In this work, highly dispersed amorphous molybdenum trisulfide-anchored Platinum nanodendrites (denoted as Pt-a-MoS3 NDs) are developed as efficient hydrogen evolution electrocatalysts. The formation mechanism of spontaneous in situ polymerization MoS42− into a-MoS3 on Pt surface is discussed in detail. It is verified that the highly dispersed a-MoS3 enhances the electrocatalytic activity of Pt catalysts under both acidic and alkaline conditions. The potentials at the current density of 10 mA cm−210) in 0.5 m  sulfuric acid (H2SO4) and 1 m  potassium hydroxide (KOH) electrolyte are −11.5 and −16.3 mV, respectively, which is significantly lower than that of commercial Pt/C (−20.2 mV and −30.7 mV). This study demonstrates that such high activity benefits from the interface between highly dispersed a-MoS3 and Pt sites, which act as the preferred adsorption sites for the efficient conversion of hydrion (H+) to hydrogen (H2). Additionally, the anchoring of highly dispersed clusters to Pt substrate greatly enhances the corresponding electrocatalytic stability.  相似文献   

10.
Developing efficient non‐noble and earth‐abundant hydrogen‐evolving electrocatalysts is highly desirable for improving the energy efficiency of water splitting in base. Molybdenum disulfide (MoS2) is a promising candidate, but its catalytic activity is kinetically retarded in alkaline media due to the unfavorable water adsorption and dissociation feature. A heterogeneous electrocatalyst is reported that is constructed by selenium‐doped MoS2 (Se‐MoS2) particles on 3D interwoven cobalt diselenide (CoSe2) nanowire arrays that drives the hydrogen evolution reaction (HER) with fast reaction kinetics in base. The resultant Se‐MoS2/CoSe2 hybrid exhibits an outstanding catalytic HER performance with extremely low overpotentials of 30 and 93 mV at 10 and 100 mA cm–2 in base, respectively, which outperforms most of the inexpensive alkaline HER catalysts, and is among the best alkaline catalytic activity reported so far. Moreover, this hybrid catalyst shows exceptional catalytic performance with very low overpotentials of 84 and 95 mV at 10 mA cm–2 in acidic and neutral electrolytes, respectively, implying robust pH universality of this hybrid catalyst. This work may provide new inspirations for the development of high‐performance MoS2‐based HER electrocatalysts in unfavorable basic media for promising catalytic applications.  相似文献   

11.
Hydrogen evolution reaction (HER) in alkaline media urgently requires electrocatalysts concurrently possessing excellent activity, flexible free‐standing capability, and low cost. A honeycombed nanoporous/glassy sandwich structure fabricated through dealloying metallic glass (MG) is reported. This free‐standing hybrid shows outstanding HER performance with a very small overpotential of 37 mV at 10 mA cm?2 and a low Tafel slope of 30 mV dec?1 in alkaline media, outperforming commercial Pt/C. By alloying 3 at% Pt into the MG precursor, a honeycombed Pt75Ni25 solid solution nanoporous structure, with fertile active sites and large contact areas for efficient HER, is created on the dealloyed MG surface. Meanwhile, the surface compressive lattice‐strain effect is also introduced by substituting the Pt lattice sites with the smaller Ni atoms, which can effectively reduce the hydrogen adsorption energy and thus improve the hydrogen evolution. Moreover, the outstanding stability and flexibility stemming from the ductile MG matrix also make the hybrid suitable for practical electrode application. This work not only offers a reliable strategy to develop cost‐effective and flexible multicomponent catalysts with low Pt usage for efficient HER, but also sheds light on understanding the alloying effects of the catalytic process.  相似文献   

12.
Controlled synthesis of highly efficient, stable, and cost‐effective oxygen reaction electrocatalysts with atomically‐dispersed Me–Nx–C active sites through an effective strategy is highly desired for high‐performance energy devices. Herein, based on regenerated silk fibroin dissolved in ferric chloride and zinc chloride aqueous solution, 2D porous carbon nanosheets with atomically‐dispersed Fe–Nx–C active sites and very large specific surface area (≈2105 m2 g?1) are prepared through a simple thermal treatment process. Owing to the 2D porous structure with large surface area and atomic dispersion of Fe–Nx–C active sites, the as‐prepared silk‐derived carbon nanosheets show superior electrochemical activity toward the oxygen reduction reaction with a half‐wave potential (E1/2) of 0.853 V, remarkable stability with only 11 mV loss in E1/2 after 30 000 cycles, as well as good catalytic activity toward the oxygen evolution reaction. This work provides a practical and effective approach for the synthesis of high‐performance oxygen reaction catalysts towards advanced energy materials.  相似文献   

13.
Exploring sustainable and high‐performance electrocatalysts for the oxygen reduction reaction (ORR) is the crucial issue for the large‐scale application of fuel cell technology. A new strategy is demonstrated to utilize the biomass resource for the synthesis of N‐doped hierarchically porous carbon supported single‐atomic Fe (SA‐Fe/NHPC) electrocatalyst toward the ORR. Based on the confinement effect of porous carbon and high‐coordination natural iron source, SA‐Fe/NHPC, derived from the hemin‐adsorbed bio‐porphyra‐carbon by rapid heat‐treatment up to 800 °C, presents the atomic dispersion of Fe atoms in the N‐doped porous carbon. Compared with the molecular hemin and nanoparticle Fe samples, the as‐prepared SA‐Fe/NHPC exhibits a superior catalytic activity (E 1/2 = 0.87 V and J k = 4.1 mA cm?2, at 0.88 V), remarkable catalytic stability (≈1 mV negative shift of E 1/2, after 3000 potential cycles), and outstanding methanol‐tolerance, even much better than the state‐of‐the‐art Pt/C catalyst. The sustainable and effective strategy for utilizing biomass to achieve high‐performance single‐atom catalysts can also provide an opportunity for other catalytic applications in the atomic scale.  相似文献   

14.
Replacing precious and nondurable Pt catalysts with cheap and commercially available materials to facilitate sluggish cathodic oxygen reduction reaction (ORR) is a key issue in the development of fuel cell technology. The recently developed cost effective and highly stable metal‐free catalysts reveal comparable catalytic activity and significantly better fuel tolerance than that of current Pt‐based catalysts; therefore, they can serve as feasible Pt alternatives for the next generation of ORR electrocatalysts. Their promising electrocatalytic properties and acceptable costs greatly promote the R&D of fuel cell technology. This review provides an overview of recent advances in state‐of‐the‐art nanostructured metal‐free electrocatalysts including nitrogen‐doped carbons, graphitic‐carbon nitride (g‐C3N4)‐based hybrids, and 2D graphene‐based materials. A special emphasis is placed on the molecular design of these electrocatalysts, origin of their electrochemical reactivity, and ORR pathways. Finally, some perspectives are highlighted on the development of more efficient ORR electrocatalysts featuring high stability, low cost, and enhanced performance, which are the key factors to accelerate the commercialization of fuel cell technology.  相似文献   

15.
The catalytic performance of Pt‐based catalysts for oxygen reduction reactions (ORR) can generally be enhanced by constructing high‐index exposed facets (HIFs). However, the synthesis of Pt alloyed high‐index skins on 1D non‐Pt surfaces to further improve Pt utilization and stability remains a fundamental challenge for practical nanocrystals. In this work, Pd nanowires (NWs) are selected as a rational medium to facilitate the epitaxial growth of Pt and Ni. Based on the different nucleation and growth habits of Pt and Ni, a continuous PtNi alloy skin bounded with HIFs spiraled on a Pd core can be obtained. Here, the as‐prepared helical Pd@PtNi NWs possess high HIF densities, low Pt contents, and optimized oxygen adsorption energies, demonstrating an enhanced ORR mass activity of 1.75 A mgPt?1 and a specific activity of 3.18 mA cm?2, which are 10 times and 12 times higher than commercial Pt/C catalysts, respectively. In addition, the 1D nanostructure enables the catalyst to be highly stable after 30 000 potential sweeping cycles. This work successfully extends bulky high‐indexed Pt alloys to core–shell nanostructures with the design of a new, highly efficient and stable Pt‐based catalyst for fuel cells.  相似文献   

16.
Searching for highly efficient and stable bifunctional electrocatalysts toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is highly desirable for the practical application of water electrolysis under alkaline electrolyte. Although electrocatalysts based on transition metal sulfides (TMSs) are widely studied as efficient (pre)catalysts toward OER under alkaline media, their HER performances are far less than the state‐of‐the‐art Pt catalyst. Herein, the synthesis of nitrogen doped 3D dandelion‐flower‐like CoS2 architecture directly grown on Ni foam (N‐CoS2/NF) is reported that possesses outstanding HER activity and durability, with an overpotential of 28 mV to obtain the current density of 10 mA cm?2, exceeding almost all the documented TMS‐based electrocatalysts. Density functional theory calculations and experimental results reveal that the d‐band center of CoS2 could be efficiently tailored by N doping, resulting in optimized adsorption free energies of hydrogen (ΔG*H) and water , which can accelerate the HER process in alkaline electrolyte. Besides, the resulting N‐CoS2/NF also displays excellent performance for OER, making it a high‐performance bifunctional electrocatalyst toward overall water splitting, with a cell voltage of 1.50 V to achieve 10 mA cm?2.  相似文献   

17.
Highly active and durable bifunctional oxygen electrocatalysts are of pivotal importance for clean and renewable energy conversion devices, but the lack of earth‐abundant electrocatalysts to improve the intrinsic sluggish kinetic process of oxygen reduction/evolution reactions (ORR/OER) is still a challenge. Fe‐N‐C catalysts with abundant natural merits are considered as promising alternatives to noble‐based catalysts, yet further improvements are urgently needed because of their poor stability and unclear catalytic mechanism. Here, an atomic‐level Fe‐N‐C electrocatalyst coupled with low crystalline Fe3C‐Fe nanocomposite in 3D carbon matrix (Fe‐SAs/Fe3C‐Fe@NC) is fabricated by a facile and scalable method. Versus atomically FeNx species and crystallized Fe3C‐Fe nanoparticles, Fe‐SAs/Fe3C‐Fe@NC catalyst, abundant in vertical branched carbon nanotubes decorated on intertwined carbon nanofibers, exhibits high electrocatalytic activities and excellent stabilities both in ORR (E1/2, 0.927 V) and OER (EJ=10, 1.57 V). This performance benefits from the strong synergistic effects of multicomponents and the unique structural advantages. In‐depth X‐ray absorption fine structure analysis and density functional theory calculation further demonstrate that more extra charges derived from modified Fe clusters decisively promote the ORR/OER performance for atomically FeN4 configurations by enhanced oxygen adsorption energy. These insightful findings inspire new perspectives for the rational design and synthesis of economical–practical bifunctional oxygen electrocatalysts.  相似文献   

18.
Highly efficient and stable electrocatalysts, particularly those that are capable of multifunctionality in the same electrolyte, are in high demand for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). In this work, highly monodisperse CoP and Co2P nanocrystals (NCs) are synthesized using a robust solution‐phase method. The highly exposed (211) crystal plane and abundant surface phosphide atoms make the CoP NCs efficient catalysts toward ORR and HER, while metal‐rich Co2P NCs show higher OER performance owing to easier formation of plentiful Co2P@COOH heterojunctions. Density functional theory calculation results indicate that the desorption of OH* from cobalt sites is the rate‐limiting step for both CoP and Co2P in ORR and that the high content of phosphide can lower the reaction barrier. A water electrolyzer constructed with a CoP NC cathode and a Co2P NC anode can achieve a current density of 10 mA cm?2 at 1.56 V, comparable even to the noble metal‐based Pt/C and RuO2/C pair. Furthermore, the CoP NCs are employed as an air cathode in a primary zinc–air battery, exhibiting a high power density of 62 mW cm?2 and good stability.  相似文献   

19.
The development of new type electrocatalysts with promising activity and antipoisoning ability is of great importance for electrocatalysis on alcohol oxidation. In this work, Pd nanowire (PdNW)/CuOx heterogeneous catalysts with different types of Pd? O? Cu interfaces (Pd/amorphous or crystalline CuOx) are prepared via a two‐step hydrothermal strategy followed by an air plasma treatment. Their interface‐dependent performance on methanol and ethanol oxidation reaction (MOR and EOR) is clearly observed. The as‐prepared PdNW/crystalline CuOx catalyst with 17.2 at% of Cu on the PdNW surface exhibits better MOR and EOR activity and stability, compared with that of PdNW/amorphous CuOx and pristine PdNW catalysts. Significantly, both the cycling tests and the chronoamperometric measurements reveal that the PdNW/crystalline CuOx catalyst yields excellent tolerance toward the possible intermediates including formaldehyde, formic acid, potassium carbonate, and carbon monoxide generated during the MOR process. The detailed analysis of their chemical state reveals that the enhanced activity and antipoison ability of the PdNW/crystalline CuOx catalyst originates from the electron‐deficient Pdδ+ active sites which gradually turn into Pd5O4 species during the MOR catalysis. The Pd5O4 species can likely be stabilized by moderate crystalline CuOx decorated on the surface of PdNW due to the strong Pd? O? Cu interaction.  相似文献   

20.
Development of highly active and stable Pt‐free oxygen reduction reaction catalysts from earth‐abundant elements remains a grand challenge for highly demanded metal–air batteries. Ag‐based alloys have many advantages over platinum group catalysts due to their low cost, high stability, and acceptable oxygen reduction reaction (ORR) performance in alkaline solutions. Nevertheless, compared to commercial Pt/C‐20%, their catalytic activity still cannot meet the demand of commercialization. In this study, a kind of catalysts screening strategy on Agx Cu100?x nanoalloys is reported, containing the surface modification method, studies of activity enhancement mechanism, and applied research on zinc–air batteries. The results exhibit that the role of selective dealloying (DE) or galvanic displacement (GD) is limited by the “parting limitation”, and this “parting limitation” determines the surface topography, position of d‐band center, and ORR performance of Agx Cu100?x alloys. The GD‐Ag55Cu45 and DE‐Ag25Cu75 catalysts alloys present excellent ORR performance that is comparable to Pt/C‐20%. The relationship between electronic perturbation and specific activity demonstrates that positive shift of the d‐band center (≈0.12 eV, relative to Ag) for GD‐Ag55Cu45 is beneficial for ORR, which is contrary to Pt‐based alloys (negative shift, ≈0.1 eV). Meanwhile, extensive electrochemical and electronic structure characterization indicates that the high work function of GD‐Ag55Cu45 (4.8 eV) is the reason behind their excellent durability for zinc–air batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号