首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Hydrogen energy is commonly considered as a clean and sustainable alternative to the traditional fossil fuels. Toward universal utilization of hydrogen energy, developing high‐efficiency, low‐cost, and sustainable energy conversion technologies, especially water‐splitting electrolyzers and fuel cells, is of paramount significance. In order to enhance the energy conversion efficiency of the water‐splitting electrolyzers and fuel cells, earth‐abundant and stable electrocatalysts are essential for accelerating the sluggish kinetics of hydrogen and oxygen reactions. In the past decade, carbon‐rich nanomaterials have emerged as a promising class of hydrogen and oxygen electrocatalysts. Here, the development and electrocatalytic activity of various carbon‐rich materials, including metal‐free carbon, conjugated porous polymers, graphdiyne, covalent organic frameworks (COFs), atomic‐metal‐doped carbon, as well as metal–organic frameworks (MOFs), are demonstrated. In particular, the correlations between their porous nanostructures/electronic structures of active centers and electrocatalytic performances are emphatically discussed. Therefore, this review article guides the rational design and synthesis of high‐performance, metal‐free, and noble‐metal‐free carbon‐rich electrocatalysts and eventually advances the rapid development of water‐splitting electrolyzers and fuel cells toward practical applications.  相似文献   

3.
Converting solar energy into hydrogen via photoelectrochemical (PEC) water splitting is one of the most promising approaches for a sustainable energy supply. Highly active, cost‐effective, and robust photoelectrodes are undoubtedly crucial for the PEC technology. To achieve this goal, transition‐metal‐based electrocatalysts have been widely used as cocatalysts to improve the performance of PEC cells for water splitting. Herein, this Review summarizes the recent progresses of the design, synthesis, and application of transition‐metal‐based electrocatalysts as cocatalysts for PEC water splitting. Mo, Ni, Co‐based electrocatalysts for the hydrogen evolution reaction (HER) and Co, Ni, Fe‐based electrocatalysts for the oxygen evolution reaction (OER) are emphasized as cocatalysts for efficient PEC HER and OER, respectively. Particularly, some most efficient and robust photoelectrode systems with record photocurrent density or durability for the half reactions of HER and OER are highlighted and discussed. In addition, the self‐biased PEC devices with high solar‐to‐hydrogen efficiency based on earth‐abundant materials are also addressed. Finally, this Review is concluded with a summary and remarks on some challenges and opportunities for the further development of transition‐metal‐based electrocatalysts as cocatalysts for PEC water splitting.  相似文献   

4.
Electrocatalysts are key for renewable energy technologies and other important industrial processes. Currently, noble metals and metal oxides are the most widely used catalysts for electrocatalysis. However, metal‐based catalysts often suffer from multiple disadvantages, including high cost, low selectivity, poor durability, impurity poisoning and fuel crossover effects, and detrimental effects on the environment. Therefore, carbon‐based metal‐free catalysts have received increasing interest as promising electrocatalysts for advanced energy conversion and storage. Recently, tremendous progress has been achieved in the development of low‐cost, efficient carbon‐based metal‐free catalysts for renewable energy technologies and beyond. Here, a concise, but comprehensive and critical, review of recent advances in the field of carbon‐based metal‐free catalysts is provided. A brief overview of various reactions involved in renewable energy conversion and storage, including the oxygen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, and bifunctional/multifunctional electrocatalysis, along with some challenges and opportunities, is presented.  相似文献   

5.
Heterogenous electrocatalysts based on transition metal sulfides (TMS) are being actively explored in renewable energy research because nanostructured forms support high intrinsic activities for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, it is described how researchers are working to improve the performance of TMS‐based materials by manipulating their internal and external nanoarchitectures. A general introduction to the water‐splitting reaction is initially provided to explain the most important parameters in accessing the catalytic performance of nanomaterials catalysts. Later, the general synthetic methods used to prepare TMS‐based materials are explained in order to delve into the various strategies being used to achieve higher electrocatalytic performance in the HER. Complementary strategies can be used to increase the OER performance of TMS, resulting in bifunctional water‐splitting electrocatalysts for both the HER and the OER. Finally, the current challenges and future opportunities of TMS materials in the context of water splitting are summarized. The aim herein is to provide insights gathered in the process of studying TMS, and describe valuable guidelines for engineering other kinds of nanomaterial catalysts for energy conversion and storage technologies.  相似文献   

6.
Covalent organic frameworks (COFs) are promising for catalysis, sensing, gas storage, adsorption, optoelectricity, etc. owning to the unprecedented combination of large surface area, high crystallinity, tunable pore size, and unique molecular architecture. Although COFs are in their initial research stage, progress has been made in the design and synthesis of COF‐based electrocatalysis for the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and CO2 reduction in energy conversion and fuel generation. Design principles are also established for some of the COF materials toward rational design and rapid screening of the best electrocatalysts for a specific application. Herein, the recent advances in the design and synthesis of COF‐based catalysts for clean energy conversion and storage are presented. Future research directions and perspectives are also being discussed for the development of efficient COF‐based electrocatalysts.  相似文献   

7.
Since first being reported as possible electrocatalysts to substitute platinum for the oxygen reduction reaction (ORR), carbon‐based metal‐free nanomaterials have been considered a class of promising low‐cost materials for clean and sustainable energy‐conversion reactions. However, beyond the ORR, the development of carbon‐based catalysts for other electrocatalytic reactions is still limited. More importantly, the intrinsic activity of most carbon‐based metal‐free catalysts is inadequate compared to their metal‐based counterparts. To address this challenge, more design strategies are needed in order to improve the overall performance of carbon‐based materials. Herein, using water splitting as an example, some state‐of‐the‐art strategies in promoting carbon‐based nanomaterials are summarized, including graphene, carbon nanotubes, and graphitic‐carbon nitride, as highly active electrocatalysts for hydrogen evolution and oxygen evolution reactions. It is shown that by rationally tuning the electronic and/or physical structure of the carbon nanomaterials, adsorption of reaction intermediates is optimized, consequently improving the apparent electrocatalytic performance. These strategies may facilitate the development in this area and lead to the discovery of advanced carbon‐based nanomaterials for various applications in energy‐conversion processes.  相似文献   

8.
9.
Coupling urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) is promising for energy-efficient hydrogen production. However, developing cheap and highly active bifunctional electrocatalysts for overall urea electrolysis remains challenging. In this work, a metastable Cu0.5Ni0.5 alloy is synthesized by a one-step electrodeposition method. It only requires the potentials of 1.33 and −28 mV to obtain the current density of ±10 mA cm−2 for UOR and HER, respectively. The metastable alloy is considered to be the main reason causing the above excellent performances. In the alkaline medium, the as-prepared Cu0.5Ni0.5 alloy exhibits good stability for HER; and conversely, NiOOH species can be rapidly formed during the UOR due to the phase segregation of Cu0.5Ni0.5 alloy. In particular, for the energy-saving hydrogen generation system coupled with HER and UOR, only 1.38 V of voltage is needed at 10 mA cm−2; and at 100 mA cm−2, the voltage decreases by ≈305 mV compared with that of the routine water electrolysis system (HER || OER). Compared with some catalysts reported recently, the Cu0.5Ni0.5 catalyst owns superior electrocatalytic activity and durability. Furthermore, this work provides a simple, mild, and rapid method for designing highly active bifunctional electrocatalysts toward urea-supporting overall water splitting.  相似文献   

10.
Urea-assisted hybrid water splitting is a promising technology for hydrogen (H2) production, but the lack of cost-effective electrocatalysts hinders its extensive application. Herein, it is reported that Nitrogen-doped Co9S8/Ni3S2 hybrid nanosheet arrays on nickel foam (N-Co9S8/Ni3S2/NF) can act as an active and robust bifunctional catalyst for both urea oxidation reaction (UOR) and hydrogen evolution reaction (HER), which could drive an ultrahigh current density of 400 mA cm−2 at a low working potential of 1.47 V versus RHE for UOR, and gives a low overpotential of 111 mV to reach 10 mA cm−2 toward HER. Further, a hybrid water electrolysis cell utilizing the synthesized N-Co9S8/Ni3S2/NF electrode as both the cathode and anode displays a low cell voltage of 1.40 V to reach 10 mA cm−2, which can be powered by an AA battery with a nominal voltage of 1.5 V. The density functional theory (DFT) calculations decipher that N-doped heterointerfaces can synergistically optimize Gibbs free energy of hydrogen and urea, thus accelerating the catalytic kinetics of HER and UOR. This work significantly advances the development of the promising cobalt–nickel-based sulfide as a bifunctional electrocatalyst for energy-saving electrolytic H2 production and urea-rich innocent wastewater treatment.  相似文献   

11.
Exploring active and durable Ni-based materials with optimized electronic and architectural engineering to promote the urea oxidation reaction (UOR) is pivotal for the urea-related technologies. Herein a 3D self-supported hierarchical-architectured nanoarray electrode (CC/MnNi@NC) is proposed in which 1D N-doped carbon nanotubes (N-CNTs) with 0D MnNi nanoparticles (NPs) encapsulation are intertwined into 2D nanosheet aligned on the carbon cloth for prominently boosted and sustained UOR electrocatalysis. From combined experimental and theoretical investigations, Mn-alloying can regulate Ni electronic state with downshift of the d-band center, facilitating active Ni3+ species generation and prompting the rate-determining step (*COO intermediate desorption). Meanwhile, the micro/nano-hierarchical nanoarray configuration with N-CNTs encapsulating MnNi NPs can not only endow strong operational durability against metal corrosion/agglomeration and enrich the density of active sites, but also accelerate electron transfer, and more intriguingly, promote mass transfer as a result of desirable superhydrophilic and quasi-superaerophobic characteristics. Therefore, with such elegant integration of 0D, 1D and 2D motifs into 3D micro/nano-hierarchical architecture, the resulting CC/MnNi@NC can deliver admirable UOR performance, favorably comparable to the best-performing UOR electrocatalysts reported thus far. This work opens a fresh prospect in developing advanced electrocatalysts via electronic manipulation coupled with architectural engineering for various energy conversion technologies.  相似文献   

12.
Oxygen electrocatalysis, i.e., oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), plays an extremely important role in oxygen‐based renewable‐energy technologies such as rechargeable metal‐air batteries, regenerative fuel cells and water splitting. Perovskite oxides have recently attracted increasing interest and hold great promise as efficient ORR and OER catalysts to replace noble‐metal‐based catalysts, owing to their high intrinsic catalytic activity, abundant variety, low cost, and rich resources. The introduction of perovskite‐carbon interfaces by forming perovskite/carbon composites may bring a synergistic effect between the two phases, thus benefiting the oxygen electrocatalysis. This review provides a comprehensive overview of recent advances in perovskite/carbon composites for oxygen electrocatalysis in alkaline media, aiming to provide insights into the key parameters that influence the ORR/OER performance of the composites, including the physical/chemical properties and morphologies of the perovskites, the multiple roles of carbon, the synthetic method and the synergistic effect. A special emphasis is placed on the origin of the synergistic effect associated with the interfacial interaction between the perovskite and the carbon phases for enhanced ORR/OER performance. Finally, the existing challenges and the future directions for the synthesis and development of more efficient oxygen catalysts based on perovskite/carbon composites are proposed.  相似文献   

13.
Hollow nanostructures have shown great promise for energy storage, conversion, and production technologies. Significant efforts have been devoted to the design and synthesis of hollow nanostructures with diverse compositional and geometric characteristics in the past decade. However, the correlation between their structure and energy‐related performance has not been reviewed thoroughly in the literature. Here, some representative examples of designing hollow nanostructure to effectively solve the problems of energy‐related technologies are highlighted, such as lithium‐ion batteries, lithium‐metal anodes, lithium–sulfur batteries, supercapacitors, dye‐sensitized solar cells, electrocatalysis, and photoelectrochemical cells. The great effect of structure engineering on the performance is discussed in depth, which will benefit the better design of hollow nanostructures to fulfill the requirements of specific applications and simultaneously enrich the diversity of the hollow nanostructure family. Finally, future directions of hollow nanostructure design to solve emerging challenges and further improve the performance of energy‐related technologies are also provided.  相似文献   

14.
Increasing energy demands and environment awareness have promoted extensive research on the development of alternative energy conversion and storage technologies with high efficiency and environmental friendliness. Among them, water splitting is very appealing, and is receiving more and more attention. The critical challenge of this renewable‐energy technology is to expedite the oxygen evolution reaction (OER) because of its slow kinetics and large overpotential. Therefore, developing efficient electrocatalysts with high catalytic activities is of great importance for high‐performance water splitting. In the past few years, much effort has been devoted to the development of alternative OER electrocatalysts based on transition‐metal elements that are low‐cost, highly efficient, and have excellent stability. Here, recent progress on the design, synthesis, and application of OER electrocatalysts based on transition‐metal elements, including Co, Ni, and Fe, is summarized, and some invigorating perspectives on the future developments are provided.  相似文献   

15.
Efficient capture of solar energy will be critical to meeting the energy needs of the future. Semiconductor photocatalysis is expected to make an important contribution in this regard, delivering both energy carriers (especially H2) and valuable chemical feedstocks under direct sunlight. Over the past few years, carbon dots (CDs) have emerged as a promising new class of metal‐free photocatalyst, displaying semiconductor‐like photoelectric properties and showing excellent performance in a wide variety of photoelectrochemical and photocatalytic applications owing to their ease of synthesis, unique structure, adjustable composition, ease of surface functionalization, outstanding electron‐transfer efficiency and tunable light‐harvesting range (from deep UV to the near‐infrared). Here, recent advances in the rational design of CDs‐based photocatalysts are highlighted and their applications in photocatalytic environmental remediation, water splitting into hydrogen, CO2 reduction, and organic synthesis are discussed.  相似文献   

16.
Amorphous metal oxides (AMOs) have aroused great enthusiasm across multiple energy areas over recent years due to their unique properties, such as the intrinsic isotropy, versatility in compositions, absence of grain boundaries, defect distribution, flexible nature, etc. Here, the materials engineering of AMOs is systematically reviewed in different electrochemical applications and recent advances in understanding and developing AMO‐based high‐performance electrodes are highlighted. Attention is focused on the important roles that AMOs play in various energy storage and conversion technologies, such as active materials in metal‐ion batteries and supercapacitors as well as active catalysts in water splitting, metal–air batteries, and fuel cells. The improvements of electrochemical performance in metal‐ion batteries and supercapacitors are reviewed regarding the enhancement in active sites, mechanical strength, and defect distribution of amorphous structures. Furthermore, the high electrochemical activities boosted by AMOs in various fundamental reactions are elaborated on and they are related to the electrocatalytic behaviors in water splitting, metal–air batteries, and fuel cells. The applications in electrochromism and high‐conducting sensors are also briefly discussed. Finally, perspectives on the existing challenges of AMOs for electrochemical applications are proposed, together with several promising future research directions.  相似文献   

17.
As a promising means of solar energy conversion, photovoltaic (PV) cell‐based electrolysis has recently drawn considerable attention for its effective solar fuel generation; especially the generation of hydrogen by solar water splitting. Inspired by remarkable accomplishments in enhancing the solar‐to‐hydrogen conversion efficiency, various efforts have aimed at fostering convenient and practical uses of PV electrolysis to make this technology ubiquitous, manageable, and efficient. Here, the design and function of a monolithic photoelectrolysis system—a so‐called artificial leaf—for use in various environments are highlighted. The uniquely designed artificial‐leaf system facilitates an unbiased water‐splitting reaction by combining superstrate PV cells in series with single‐face electrodes in a compact 2D catalytic configuration. Floatability is a new feature of the water‐splitting artificial leaf; this feature maximizes solar light utilization and allows for easy retrieval for recycling. Additionally, its planar design enables operation of the device in water‐scarce conditions. These characteristics endow the artificial leaf with versatility and a high adaptability to natural environments, widening the applicability of the device.  相似文献   

18.
The development of active and durable bifunctional electrocatalysts for overall water splitting is mandatory for renewable energy conversion. This study reports a general method for controllable synthesis of a class of IrM (M = Co, Ni, CoNi) multimetallic porous hollow nanocrystals (PHNCs), through etching Ir‐based, multimetallic, solid nanocrystals using Fe3+ ions, as catalysts for boosting overall water splitting. The Ir‐based multimetallic PHNCs show transition‐metal‐dependent bifunctional electrocatalytic activities for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in acidic electrolyte, with IrCo and IrCoNi PHNCs being the best for HER and OER, respectively. First‐principles calculations reveal a ligand effect, induced by alloying Ir with 3d transition metals, can weaken the adsorption energy of oxygen intermediates, which is the key to realizing much‐enhanced OER activity. The IrCoNi PHNCs are highly efficient in overall‐water‐splitting catalysis by showing a low cell voltage of only 1.56 V at a current density of 2 mA cm?2, and only 8 mV of polarization‐curve shift after a 1000‐cycle durability test in 0.5 m H2SO4 solution. This work highlights a potentially powerful strategy toward the general synthesis of novel, multimetallic, PHNCs as highly active and durable bifunctional electrocatalysts for high‐performance electrochemical overall‐water‐splitting devices.  相似文献   

19.
As a consequence of the depletion of fossil fuels and an increasing population, the global energy crisis has driven researchers to explore innovative energy storage and conversion (ESC) devices, such as fuel cells, electrolyzers and chemical looping systems. In order to enhance the energy conversion efficiency of these electrochemical devices, high performance and stable electrocatalysts are essential to accelerate the sluggish electrochemical kinetics, e.g. oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER) and redox reaction. In recent years, as cost-effective and high-efficient catalysts, perovskite oxides have attracted much attention. In addition, the potential of perovskite electrocatalysts may be further boosted due to their flexible composition and tunable electronic structures. This review provides the readers with a comprehensive understanding and updated information of improvements towards the electrocatalytic performances of perovskite oxides. It will focus on research papers regarding low to intermediate temperature electrochemical devices, e.g., water splitting, fuel cells, chemical looping technology and three-way catalysis (TWC) published over the last five years. Various design strategies for optimizing the conductivity and catalytic activity of perovskite are discussed in detail. In the end, this review discusses challenges for the future researches in regard to perovskite based electrocatalysts.  相似文献   

20.
Water oxidation, also known as the oxygen evolution reaction (OER), is a crucial process in energy conversion and storage, especially in water electrolysis. The critical challenge of the electrochemical water splitting technology is to explore alternative precious‐metal‐free catalysts for the promotion of the kinetically sluggish OER. Recently, emerging two‐dimensional (2D) ultrathin materials with abundant accessible active sites and improved electrical conductivity provide an ideal platform for the synthesis of promising OER catalysts. This Review focuses on the most recent advances in ultrathin 2D nanostructured materials for enhanced electrochemical activity of the OER. The design, synthesis and performance of such ultrathin 2D nanomaterials‐based OER catalysts and their property‐structure relationships are discussed, providing valuable insights to the exploration of novel OER catalysts with high efficiency and low overpotential. The potential research directions are also proposed in the research field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号