首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein, ferumoxytol (Fer) capped antiprogrammed cell death‐ligand 1 (PD‐L1) antibodies (aPD‐L1) loaded ultralarge pore mesoporous silica nanoparticles (Fer‐ICB‐UPMSNPs) are formulated for a sequential magnetic resonance (MR) image guided local immunotherapy after cabazitaxel (Cbz) chemotherapy for the treatment of prostate cancer (PC). The highly porous framework of UPMSNP provides a large capacity for aPD‐L1. Fer capping of the pores extends the period of aPD‐L1 release and provides MR visibility of the aPD‐L1 loaded UPMSNP. As‐chosen Cbz chemotherapy prior to the local immunotherapy induces strong immunogenic cell death, dendritic cell maturation, and upregulation of PD‐L1 of tumor cells. Finally, tumor growth inhibition of sequential MR image‐guided local delivery of Fer‐ICB‐UPMSNPs and a tumor specific adoptive immune reaction are demonstrated in the pretreated Tramp C1 PC mouse model with Cbz chemotherapy. The tumor suppression is superior to those obtained with systemic ICB treatment after Cbz, only Fer‐ICB‐UPMSNP or only Cbz. As a proof‐of concept, MR image‐guided local ICB immunotherapy using Fer‐ICB‐UPMSNPs after chemotherapy suggests a new perspective of translational local immunotherapy for patients who are treated with standard chemotherapies.  相似文献   

2.
Cancer immunotherapy has achieved promising clinical responses in recent years owing to the potential of controlling metastatic disease. However, there is a limited research to prove the superior therapeutic efficacy of immunotherapy on breast cancer compared with melanoma and non‐small‐cell lung cancer because of its limited expression of PD‐L1, low infiltration of cytotoxic T lymphocytes (CTLs), and high level of myeloid‐derived suppressor cells (MDSCs). Herein, a multifunctional nanoplatform (FA‐CuS/DTX@PEI‐PpIX‐CpG nanocomposites, denoted as FA‐CD@PP‐CpG) for synergistic phototherapy (photodynamic therapy (PDT), photothermal therapy (PTT) included) and docetaxel (DTX)‐enhanced immunotherapy is successfully developed. The nanocomposites exhibit excellent PDT efficacy and photothermal conversion capability under 650 and 808 nm irradiation, respectively. More significantly, FA‐CD@PP‐CpG with no obvious side effects can remarkably inhibit the tumor growth in vivo based on a 4T1‐tumor‐bearing mice modal. A low dosage of loaded DTX in FA‐CD@PP‐CpG can promote infiltration of CTLs to improve efficacy of anti‐PD‐L1 antibody (aPD‐L1), suppress MDSCs, and effectively polarize MDSCs toward M1 phenotype to reduce tumor burden, further to enhance the antitumor efficacy. Taken together, FA‐CD@PP‐CpG nanocomposites offer an efficient synergistic therapeutic modality in docetaxel‐enhanced immunotherapy for clinical application of breast cancer.  相似文献   

3.
Patients with advanced melanoma that is of low tumor‐associated antigen (TAA) expression often respond poorly to PD‐1/PD‐L1 blockade therapy. Epigenetic modulators, such as hypomethylation agents (HMAs), can enhance the antitumor immune response by inducing TAA expression. Here, a dual bioresponsive gel depot that can respond to the acidic pH and reactive oxygen species (ROS) within the tumor microenvironment (TME) for codelivery of anti‐PD1 antibody (aPD1) and Zebularine (Zeb), an HMA, is engineered. aPD1 is first loaded into pH‐sensitive calcium carbonate nanoparticles (CaCO3 NPs), which are then encapsulated in the ROS‐responsive hydrogel together with Zeb (Zeb‐aPD1‐NPs‐Gel). It is demonstrated that this combination therapy increases the immunogenicity of cancer cells, and also plays roles in reversing immunosuppressive TME, which contributes to inhibiting the tumor growth and prolonging the survival time of B16F10‐melanoma‐bearing mice.  相似文献   

4.
Combination immunotherapy has recently emerged as a powerful cancer treatment strategy. A promising treatment approach utilizes coadministration of antagonistic antibodies to block checkpoint inhibitor receptors, such as antiprogrammed cell death‐1 (aPD1), alongside agonistic antibodies to activate costimulatory receptors, such as antitumor necrosis factor receptor superfamily member 4 (aOX40). Optimal T‐cell activation is achieved when both immunomodulatory agents simultaneously engage T‐cells and promote synergistic proactivation signaling. However, standard administration of these therapeutics as free antibodies results in suboptimal T‐cell binding events, with only a subset of the T‐cells binding to both aPD1 and aOX40. Here, it is shown that precise spatiotemporal codelivery of aPD1 and aOX40 using nanoparticles (NP) (dual immunotherapy nanoparticles, DINP) results in improved T‐cell activation, enhanced therapeutic efficacy, and increased immunological memory. It is demonstrated that DINP elicits higher rates of T‐cell activation in vitro than free antibodies. Importantly, it is demonstrated in two tumor models that combination immunotherapy administered in the form of DINP is more effective than the same regimen administered as free antibodies. This work demonstrates a novel strategy to improve combination immunotherapy using nanotechnology.  相似文献   

5.
Current cancer immunotherapy based on immune checkpoint blockade (ICB) still suffers from low response rate and systemic toxicity. To overcome the limitation, a novel therapeutic platform that can revert nonimmunogenic tumors into immunogenic phenotype is highly required. Herein, a designer scaffold loaded with both immune nanoconverters encapsulated with resiquimod (iNCVs (R848)) and doxorubicin, which provides the polarization of immunosuppressive tumor‐associated macrophages (TAMs) and myeloid‐derived suppressor cells (MDSCs) into tumoricidal antigen‐presenting cells (APCs), rather than depleting them, as well as in situ vaccination that can be generated in vivo without the need to previously analyze and sequence tumor antigens to favor neoantigen‐specific T cell responses is suggested. Local and sustained release of iNCVs (R848) and doxorubicin from the designer scaffold not only reduces the frequency of immunosuppressive cells in tumors but also increases systemic antitumor immune response, while minimizing systemic toxicity. Reshaping the tumor microenivronment (TME) using the designer‐scaffold‐induced synergistic antitumor immunity with ICB effects and long‐term central and effector memory T cell responses, results in the prevention of postsurgical tumor recurrence and metastasis. The spatiotemporal modulation of TMEs through designer scaffolds is expected to be a strategy to overcome the limitations and improve the therapeutic efficacy of current immunotherapies with minimized systemic toxicity.  相似文献   

6.
Targeting programmed cell death protein 1 (PD‐1)/programmed death ligand 1 (PD‐L1) immunologic checkpoint blockade with monoclonal antibodies has achieved recent clinical success in antitumor therapy. However, therapeutic antibodies exhibit several issues such as limited tumor penetration, immunogenicity, and costly production. Here, Bristol‐Myers Squibb nanoparticles (NPs) are prepared using a reprecipitation method. The NPs have advantages including passive targeting, hydrophilic and nontoxic features, and a 100% drug loading rate. BMS‐202 is a small‐molecule inhibitor of the PD‐1/PD‐L1 interaction that is developed by BMS. Transfer of BMS‐202 NPs to 4T1 tumor‐bearing mice results in markedly slower tumor growth to the same degree as treatment with anti‐PD‐L1 monoclonal antibody (α‐PD‐L1). Consistently, the combination of Ce6 NPs with BMS‐202 NPs or α‐PD‐L1 in parallel shows more efficacious antitumor and antimetastatic effects, accompanied by enhanced dendritic cell maturation and infiltration of antigen‐specific T cells into the tumors. Thus, inhibition rates of primary and distant tumors reach >90%. In addition, BMS‐202 NPs are able to attack spreading metastatic lung tumors and offer immune‐memory protection to prevent tumor relapse. These results indicate that BMS‐202 NPs possess effects similar to α‐PD‐L1 in the therapies of 4T1 tumors. Therefore, this work reveals the possibility of replacing the antibody used in immunotherapy for tumors with BMS‐202 NPs.  相似文献   

7.
Chemotherapy is well recognized to induce immune responses during some chemotherapeutic drugs‐mediated tumor eradication. Here, a strategy involving blocking programmed cell death protein 1 (PD‐1) to enhance the chemotherapeutic effect of a doxorubicin nanoprodrug HA‐Psi‐DOX is proposed and the synergetic mechanism between them is further studied. The nanoprodrugs are fabricated by conjugating doxorubicin (DOX) to an anionic polymer hyaluronic acid (HA) via a tumor overexpressed matrix metalloproteinase sensitive peptide (CPLGLAGG) for tumor targeting and enzyme‐activated drug release. Once accumulated at the tumor site, the nanoprodrug can be activated to release antitumor drug by tumor overexpressed MMP‐2. It is found that HA‐Psi‐DOX nanoparticles can kill tumor cells effectively and initiate an antitumor immune response, leading to the upregulation of interferon‐γ. This cytokine promotes the expression of programmed cell death protein‐ligand 1 (PD‐L1) on tumor cells, which will cause immunosuppression after interacting with PD‐1 on the surface of lymphocytes. The results suggest that the therapeutic efficiency of HA‐Psi‐DOX nanoparticles is significantly improved when combined with checkpoint inhibitors anti‐PD‐1 antibody (α‐PD1) due to the neutralization of immunosuppression by blocking the interaction between PD‐L1 and PD‐1. This therapeutic system by combining chemotherapy and immunotherapy further increases the link between conventional tumor therapies and immunotherapy.  相似文献   

8.
Metastatic breast cancer may be resistant to chemo‐immunotherapy due to the existence of cancer stem cells (CSC). Also, the control of particle size and drug release of a drug carrier for multidrug combination is a key issue influencing the therapy effect. Here, a cocktail strategy is reported, in which chemotherapy against both bulk tumor cells and CSC and immune checkpoint blockade therapy are intergraded into one drug delivery system. The chemotherapeutic agent paclitaxel (PTX), the anti‐CSC agent thioridazine (THZ), and the PD‐1/PD‐L1 inhibitor HY19991 (HY) are all incorporated into an enzyme/pH dual‐sensitive nanoparticle with a micelle–liposome double‐layer structure. The particle size shrinks when the nanoparticle transfers from circulation to tumor tissues, favoring both pharmacokinetics and cellular uptake, meanwhile achieving sequential drug release where needed. This nano device, named PM@THL, increases the intratumoral drug concentrations in mice and exhibits significant anticancer efficacy, with tumor inhibiting rate of 93.45% and lung metastasis suppression rate of 97.64%. It also reduces the proportion of CSC and enhances the T cells infiltration in tumor tissues, and thus prolongs the survival of mice. The cocktail therapy based on the spatio‐temporally controlled nano device will be a promising strategy for treating breast cancer.  相似文献   

9.
Despite advances in controlled drug delivery, reliable methods for activatable, high‐resolution control of drug release are needed. The hypothesis that the photothermal effect mediated by a near‐infrared (NIR) laser and hollow gold nanospheres (HAuNSs) could modulate the release of anticancer agents is tested with biodegradable and biocompatible microspheres (1–15 µm) containing the antitumor drug paclitaxel (PTX) and HAuNSs (≈35 nm in diameter), which display surface plasmon absorbance in the NIR region. HAuNS‐containing microspheres exhibit a NIR‐induced thermal effect similar to that of plain HAuNSs. Rapid, repetitive PTX release from the PTX/HAuNS‐containing microspheres is observed upon irradiation with NIR light (808 nm), whereas PTX release is insignificant when the NIR light is switched off. The release of PTX from the microspheres is readily controlled by the output power of the NIR laser, duration of irradiation, treatment frequency, and concentration of HAuNSs embedded inside the microspheres. In vitro, cancer cells incubated with PTX/HAuNS‐loaded microspheres and irradiated with NIR light display significantly greater cytotoxic effects than cells incubated with the microspheres alone or cells irradiated with NIR light alone, owing to NIR‐light‐triggered drug release. Treatment of human U87 gliomas and MDA‐MB‐231 mammary tumor xenografts in nude mice with intratumoral injections of PTX/HAuNS‐loaded microspheres followed by NIR irradiation results in significant tumor‐growth delay compared to tumors treated with HAuNS‐loaded microspheres (no PTX) and NIR irradiation or with PTX/HAuNS‐loaded microspheres alone. The data support the feasibility of a therapeutic approach in which NIR light is used for simultaneous modulation of drug release and induction of photothermal cell killing.  相似文献   

10.
Poor deep tumor penetration and incomplete intracellular drug release remain challenges for antitumor nanomedicine application in clinical settings. Herein, a nanomedicine (RLPA‐NPs) is developed that can achieve prolonged blood circulation, deep tumor penetration, active‐targeting of cancer cells, endosome/lysosome escape, and intracellular selectivity self‐amplified drug release for effective drug delivery. The RLPA‐NPs are constructed by encapsulation of a pH‐sensitive polymer octadecylamine‐poly(aspartate‐1‐(3‐aminopropyl) imidazole) (OA‐P(Asp‐API)) and a ROS‐generation agent, β‐Lapachone (Lap), in micelles assembled by the tumor‐penetration peptide internalizing RGD (iRGD)‐modified ROS‐responsive paclitaxel (PTX)‐prodrug. iRGD could promote RLPA‐NPs penetration into deep tumor tissue, and specific targeting to cancer cells. After internalization by cancer cells through receptor‐mediated endocytosis, OA‐P(Asp‐API) can rapidly protonate in the endosome's acidic environment, resulting in RLPA‐NPs escape from the endosome through the “proton sponge effect”. At the same time, the RLPA‐NPs micelle disassembles, releasing Lap and PTX‐prodrug. Subsequently, the released Lap could generate ROS, consequently amplifying and accelerating PTX release to kill tumor cells. The in vitro and in vivo studies demonstrated that RLPA‐NPs can significantly improve the therapeutic effect compared to control groups. Therefore, RLPA‐NPs are a promising nanoplatform for overcoming multiple physiological and pathological barriers to enhance drug delivery.  相似文献   

11.
Chemoimmunotherapy is reported to activate a robust T cell antitumor immune response by triggering immunogenic cell death (ICD), which has initiated a number of clinical trials. However, current chemoimmunotherapy is restricted to a small fraction of patients due to low drug delivery efficacy and immunosuppression within the tumor microenvironment. A tumor microenvironment‐activatable prodrug vesicle for cancer chemoimmunotherapy using ICD is herein reported. The prodrug vesicles are engineered by integrating an oxaliplatin (OXA) prodrug and PEGylated photosensitizer (PS) into a single nanoplatform, which show tumor‐specific accumulation, activation, and deep penetration in response to the tumoral acidic and enzymatic microenvironment. It is demonstrated that codelivery of OXA prodrug and PS can trigger ICD of the tumor cells by immunogenic cells killing. The combination of prodrug vesicle‐induced ICD with Î ± CD47‐mediated CD47 blockade further facilitates dendritic cell (DC) maturation, promotes antigen presentation by DCs, and eventually propagates the antitumor immunity of ICD. CD47 blockade and ICD induction efficiently inhibit the growth of both primary and abscopal tumors, suppress tumor metastasis, and prevent tumor recurrence. Collectively, these results imply that boosting antitumor immunity using ICD induction and suppressing tumor immune evasion via CD47 blockade might be promising for improved cancer chemoimmunotherapy.  相似文献   

12.
Neoantigens induced by random mutations and specific to an individual's cancer are the most important tumor antigens recognized by T cells. Among immunologically “cold” tumors, limited recognition of tumor neoantigens results in the absence of a de novo antitumor immune response. These “cold” tumors present a clinical challenge as they are poorly responsive to most immunotherapies, including immune checkpoint inhibitors (ICIs). Radiation therapy (RT) can enhance immune recognition of “cold” tumors, resulting in a more diversified antitumor T‐cell response, yet RT alone rarely results in a systemic antitumor immune response. Therefore, a multifunctional bacterial membrane‐coated nanoparticle (BNP) composed of an immune activating PC7A/CpG polyplex core coated with bacterial membrane and imide groups to enhance antigen retrieval is developed. This BNP can capture cancer neoantigens following RT, enhance their uptake in dendritic cells (DCs), and facilitate their cross presentation to stimulate an antitumor T‐cell response. In mice bearing syngeneic melanoma or neuroblastoma, treatment with BNP+RT results in activation of DCs and effector T cells, marked tumor regression, and tumor‐specific antitumor immune memory. This BNP facilitates in situ immune recognition of a radiated tumor, enabling a novel personalized approach to cancer immunotherapy using off‐the‐shelf therapeutics.  相似文献   

13.
Stimuli‐responsive carriers releasing multiple drugs have been researched for synergistic combinatorial cancer treatment with reduced side‐effects. However, previously used drug carriers have limitations in encapsulating multiple drug components in a single carrier and releasing each drug independently. In this work, pH‐sensitive, multimodulated, anisotropic drug carrier particles are synthesized using an acid‐cleavable polymer and stop‐flow lithography. The particles exhibit a faster drug release rate at the acidic pH of tumors than at physiological pH, demonstrating their potential for tumor‐selective drug release. The drug release rate of the particles can be adjusted by controlling the monomer composition. To accomplish multimodulated drug release, multicompartmental particles are synthesized. The drug release profile of each compartment is programmed by tailoring the monomer composition. These pH‐sensitive, multicompartmental particles are promising drug carriers enabling tumor‐selective and multimodulated release of multiple drugs for synergistic combination cancer therapy.  相似文献   

14.
Recently, the development of multifunctional theranostic nanoplatforms to realize tumor‐specific imaging and enhanced cancer therapy via responding or modulating the tumor microenvironment (TME) has attracted tremendous interests in the field of nanomedicine. Herein, tungsten disulfide (WS2) nanoflakes with their surface adsorbed with iron oxide nanoparticles (IONPs) via self‐assembly are coated with silica and then subsequently with manganese dioxide (MnO2), on to which polyethylene glycol (PEG) is attached. The obtained WS2‐IO/S@MO‐PEG appears to be highly sensitive to pH, enabling tumor pH‐responsive magnetic resonance imaging with IONPs as the pH‐inert T2 contrast probe and MnO2 as the pH‐sensitive T1 contrast probe. Meanwhile, synergistic combination tumor therapy is realized with such WS2‐IO/S@MO‐PEG, by utilizing the strong near‐infrared light and X‐ray absorbance of WS2 for photothermal therapy (PTT) and enhanced cancer radiotherapy (RT), respectively, as well as the ability of MnO2 to decompose tumor endogenous H2O2 and relieve tumor hypoxia to further overcome hypoxia‐associated radiotherapy resistance. The combination of PTT and RT with WS2‐IO/S@MO‐PEG results in a remarkable synergistic effect to destruct tumors. This work highlights the promise of developing multifunction nanocomposites for TME‐specific imaging and TME modulation, aiming at precision cancer synergistic treatment.  相似文献   

15.
16.
A new synergistic treatment that combines photothermal therapy (PTT) and inflammation‐mediated active targeting (IMAT) chemotherapy based on cytopharmaceuticals is developed. During PTT, the photothermal tumor ablation is accompanied by an inflammatory effect and upregulation of inflammatory factors at the tumor site, which may accelerate tumor regeneration. Moreover, PTT‐induced inflammation can also recruit neutrophils (NEs) to the tumor site. To convert the disadvantages of PTT‐induced inflammation into strengths, NEs are investigated as cytopharmaceuticals for IMAT chemotherapy to further inhibit the tumor recurrence after PTT due to the chemotaxis of NEs to the inflammatory sites. In this study, PEGylated gold nanorods (PEG‐GNRs) are explored as the photothermal agent and paclitaxel‐loaded cytopharmaceuticals of NEs as the IMAT chemotherapeutic agent. PTT is conducted at 72 h postinjection of PEG‐GNRs, followed by cytopharmaceuticals for IMAT chemotherapy. It is demonstrated that the cytopharmaceuticals effectively accumulate in the tumor sites after PTT, which leads to a significant enhancement of antitumor efficacy and a reduction in systemic toxicity. These studies suggest that PTT‐induced inflammation further enhances the chemotherapy of cytopharmaceuticals, and the combination of PTT and IMAT chemotherapy may be a promising synergistic strategy for targeted cancer therapy.  相似文献   

17.
Cancer cells resist to the host immune antitumor response via multiple suppressive mechanisms, including the overexpression of PD‐L1 that exhausts antigen‐specific CD8+ T cells through PD‐1 receptors. Checkpoint blockade antibodies against PD‐1 or PD‐L1 have shown unprecedented clinical responses. However, limited host response rate underlines the need to develop alternative engineering approaches. Here, engineered cellular nanovesicles (NVs) presenting PD‐1 receptors on their membranes, which enhance antitumor responses by disrupting the PD‐1/PD‐L1 immune inhibitory axis, are reported. PD‐1 NVs exhibit a long circulation and can bind to the PD‐L1 on melanoma cancer cells. Furthermore, 1‐methyl‐tryptophan, an inhibitor of indoleamine 2,3‐dioxygenase can be loaded into the PD‐1 NVs to synergistically disrupt another immune tolerance pathway in the tumor microenvironment. Additionally, PD‐1 NVs remarkably increase the density of CD8+ tumor infiltrating lymphocytes in the tumor margin, which directly drive tumor regression.  相似文献   

18.
Hypoxia is reported to participate in tumor progression, promote drug resistance, and immune escape within tumor microenvironment, and thus impair therapeutic effects including the chemotherapy and advanced immunotherapy. Here, a multifunctional biomimetic core–shell nanoplatform is reported for improving synergetic chemotherapy and immunotherapy. Based on the properties including good biodegradability and functionalities, the pH‐sensitive zeolitic imidazolate framework 8 embedded with catalase and doxorubicin constructs the core and serves as an oxygen generator and drug reservoir. Murine melanoma cell membrane coating on the core provides tumor targeting ability and elicits an immune response due to abundance of antigens. It is demonstrated that this biomimetic core–shell nanoplatform with oxygen generation can be partial to accumulate in tumor and downregulate the expression of hypoxia‐inducible factor 1α, which can further enhance the therapeutic effects of chemotherapy and reduce the expression of programmed death ligand 1 (PD‐L1). Combined with immune checkpoints blockade therapy by programmed death 1 (PD‐1) antibody, the dual inhibition of the PD‐1/PD‐L1 axis elicits significant immune response and presents a robust effect in lengthening tumor recurrent time and inhibiting tumor metastasis. Consequently, the multifunctional nanoplatform provides a potential strategy of synergetic chemotherapy and immunotherapy.  相似文献   

19.
The development of biomaterial‐based immune niches that can modulate immunosuppressive factors in tumor microenvironment (TME) will be a key technology for improving current cancer immunotherapy. Here, implantable, engineered 3D porous scaffolds are designed to generate synergistic action between myeloid‐derived suppressor cell (MDSC)‐depleting agents, which can accommodate the establishment of a permissive immunogenic microenvironment to counteract tumor‐induced immunosuppression, and cancer vaccines consisting of whole tumor lysates and nanogel‐based adjuvants, which can generate tumor antigen‐specific T cell responses. The local peritumoral implantation of the synthetic immune niche (termed immuneCare‐DISC, iCD) as a postsurgical treatment in an advanced‐stage primary 4T1 breast tumor model generates systemic antitumor immunity and prevents tumor recurrence at the surgical site as well as the migration of residual tumor cells into the lungs, resulting in 100% survival. These therapeutic outcomes are achieved through the inhibition of immunosuppressive MDSCs in tumors and spleens by releasing gemcitabine and recruitment/activation of dendritic cells, enhanced population of CD4+ and CD8+ T cells, and increased IFN‐γ production by cancer vaccines from the iCD. This combined spatiotemporal modulation of tumor‐derived immunosuppression and vaccine‐induced immune stimulation through the iCD is expected to provide an immune niche for prevention of postoperative tumor recurrence and metastasis.  相似文献   

20.
The conjugate of paclitaxel (PTX) and docosahexaenoic acid has entered into clinical trials. However, the most recent clinical outcomes fell short of expectations, due to the extremely slow drug release from the hydrophobic conjugates. Herein, a novel prodrug‐based nanoplatform self‐assembled by the disulfide bond linked conjugates of PTX and oleic acid for rapid and differential release of PTX in tumor cells is reported. This redox‐responsive prodrug‐nanosystem demonstrates multiple therapeutic advantages, including one‐step facile fabrication, high drug‐loading efficiency (56%, w/w), on‐demand drug release responding to redox stimuli, as well as favorable cellular uptake and biodistribution. These advantages result in significantly enhanced antitumor efficacy in vivo, with the tumor almost completely disappearing in mice. Such a uniquely engineered prodrug‐nanosystem has great potential to be used as potent chemotherapeutic nanomedicine in clinical cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号