首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the dynamic self‐triggered output‐feedback control problem is investigated for a class of nonlinear stochastic systems with time delays. To reduce the network resource consumption, the dynamic event‐triggered mechanism is implemented in the sensor‐to‐controller channel. Criteria are first established for the closed‐loop system to be stochastically input‐to‐state stable under the event‐triggered mechanism. Furthermore, sufficient conditions are given under which the closed‐loop system with dynamic event‐triggered mechanism is almost surely stable, and the output‐feedback controller as well as the dynamic event‐triggered mechanism are co‐designed. Moreover, a dynamic self‐triggered mechanism is proposed such that the nonlinear stochastic system with the designed output‐feedback controller is stochastically input‐to‐state stable and the Zeno phenomenon is excluded. Finally, a numerical example is provided to illustrate the effectiveness of proposed dynamic self‐triggered output‐feedback control scheme.  相似文献   

2.
In this paper, we are concerned with a cascade of ODE‐wave systems with the control actuator‐matched disturbance at the boundary of the wave equation. We use the sliding mode control (SMC) technique and the active disturbance rejection control method to overcome the disturbance, respectively. By the SMC approach, the disturbance is supposed to be bounded only. The existence and uniqueness of solution for the closed‐loop via SMC are proved, and the monotonicity of the ‘reaching condition’ is presented without the differentiation of the sliding mode function, for which it may not always exist for the weak solution of the closed‐loop system. Considering that the SMC usually requires the large control gain and may exhibit chattering behavior, we then develop an active disturbance rejection control to attenuate the disturbance. The disturbance is canceled in the feedback loop. The closed‐loop systems with constant high gain and time‐varying high gain are shown respectively to be practically stable and asymptotically stable. Then we continue to consider output feedback stabilization for this coupled ODE‐wave system, and we design a variable structure unknown input‐type state observer that is shown to be exponentially convergent. The disturbance is estimated through the extended state observer and then canceled in the feedback loop by its approximated value. These enable us to design an observer‐based output feedback stabilizing control to this uncertain coupled system. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This article investigates the problem of using sampled‐data state/output feedback to semiglobally stabilize a class of uncertain nonlinear systems whose linearization around the origin is neither controllable nor observable. For any arbitrarily large bound of initial states, by employing homogeneous domination approach and a homogeneous version of Gronwall‐Bellman inequality, a sampled‐data state feedback controller with appropriate sampling period and scaling gain is constructed to semiglobally stabilize the system. In the case when not all states are available, a reduced‐order sampled‐data observer is constructed to provide estimates for the control law, which can guarantee semiglobal stability of the closed‐loop system with carefully selected sampling period and scaling gain.  相似文献   

4.
The problem of global robust stabilization is studied by both continuous‐time and sampled‐data output feedback for a family of nonminimum‐phase nonlinear systems with uncertainty. The uncertain nonlinear system considered in this paper has an interconnect structure consisting of a driving system and a possibly unstable zero dynamics with uncertainty, ie, the uncertain driven system. Under a linear growth condition on the uncertain zero dynamics and a Lipschitz condition on the driving system, we show that it is possible to globally robustly stabilize the family of uncertain nonminimum‐phase systems by a single continuous‐time or a sampled‐data output feedback controller. The sampled‐data output feedback controller is designed by using the emulated versions of a continuous‐time observer and a state feedback controller, ie, by holding the input/output signals constant over each sampling interval. The design of either continuous‐time or sampled‐data output compensator uses only the information of the nominal system of the uncertain controlled plant. In the case of sampled‐data control, global robust stability of the hybrid closed‐loop system with uncertainty is established by means of a feedback domination method together with the robustness of the nominal closed‐loop system if the sampling time is small enough.  相似文献   

5.
In recent years, nonlinear model predictive control (NMPC) schemes have been derived that guarantee stability of the closed loop under the assumption of full state information. However, only limited advances have been made with respect to output feedback in the framework of nonlinear predictive control. This paper combines stabilizing instantaneous state feedback NMPC schemes with high-gain observers to achieve output feedback stabilization. For a uniformly observable MIMO system class it is shown that the resulting closed loop is asymptotically stable. Furthermore, the output feedback NMPC scheme recovers the performance of the state feedback in the sense that the region of attraction and the trajectories of the state feedback scheme can be recovered to any degree of accuracy for large enough observer gains, thus leading to semi-regional results. Additionally, it is shown that the output feedback controller is robust with respect to static sector bounded nonlinear input uncertainties.  相似文献   

6.
利用模糊T—S模型对一类不确定非线性时滞系统进行模糊建模,在此基础上研究基于观测器的模糊动态输出反馈控制,利用矩阵不等式(LMI)算法给出了模糊闭环系统稳定的充分条件及其反馈控制增益和观测器增益的求法,以及输出反馈控制器的设计方法。最后仿真结果证明所提出的控制方法是有效的。  相似文献   

7.
In this article, we consider the event‐triggered cascade high‐gain observer (ETCHGO) for a class of nonlinear systems. By cascading lower dimensional observers, we design a cascade high‐gain observer together with a Zeno‐free event‐triggered mechanism to estimate the state of the plant. We show that the ETCHGO has the same steady‐state performance as the continuous‐time cascade high‐gain observer, that is, there is a finite time after which the estimation error will not exceed the given threshold, and moreover, the finite time and the threshold can be made sufficiently small by adjusting some design parameters. We also investigate an ETCHGO with saturation, which will reduce the peaking value while maintaining the steady‐state estimation performance. Furthermore, we use the ETCHGO with saturation to solve the output feedback stabilization problem for a class of nonlinear systems. An example is given to illustrate our results.  相似文献   

8.
This article investigates the finite‐time output feedback stabilization problem for a class of nonlinear time‐varying delay systems in the p‐normal form. First, a reduced‐order state observer is designed to estimate the unmeasurable state. Then, an output feedback controller is constructed, with the help of the finite‐time Lyapunov stability theorem, it is proved that the state of the resulting closed‐loop system converges to the origin in finite time. Two simulation examples are given to verify the effectiveness of the proposed scheme.  相似文献   

9.
In this paper, we describe a dyadic adaptive control framework for output tracking in a class of semilinear systems of partial differential equations with boundary actuation and unknown distributed nonlinearities. The dyadic adaptive control framework uses the linear terms in the system to split the plant into 2 virtual subsystems, one of which contains the nonlinearities, whereas the other contains the control input. Full‐plant‐state feedback is used to estimate the unmeasured individual states of the 2 subsystems as well as the nonlinearities. The control signal is designed to ensure that the controlled subsystem tracks a suitably modified reference signal. We prove the well posedness of the closed‐loop system rigorously and derive conditions for closed‐loop stability and robustness using finite‐gain stability theory.  相似文献   

10.
A novel anti‐windup design of active disturbance rejection control (ADRC) is proposed for industrial sampled systems with input delay and saturation. By using a generalized predictor to estimate the delay‐free system output, a modified extended state observer is designed to simultaneously estimate the system state and disturbance, which could become an anti‐windup compensator when the input saturation occurs. Accordingly, a feedback controller is analytically designed for disturbance rejection. By proposing the desired closed‐loop transfer function for the set‐point tracking, a prefilter is designed to tune the tracking performance while guaranteeing no steady‐state output tracking error. A sufficient condition for the closed‐loop system stability is established with proof for practical application subject to the input delay variation. Illustrative examples from the literature are used to demonstrate the effectiveness and merit of the proposed control design.  相似文献   

11.
In this paper, we apply the active disturbance rejection control approach to output‐feedback stabilization for uncertain lower triangular nonlinear systems with stochastic inverse dynamics and stochastic disturbance. We first design an extended state observer (ESO) to estimate both unmeasured states and stochastic total disturbance that includes unknown system dynamics, unknown stochastic inverse dynamics, external stochastic disturbance, and uncertainty caused by the deviation of control parameter from its nominal value. The stochastic total disturbance is then compensated in the feedback loop. The constant gain and the time‐varying gain are used in ESO design separately. The mean square practical stability for the closed‐loop system with constant gain ESO and the mean square asymptotic stability with time‐varying gain ESO are developed, respectively. Some numerical simulations are presented to demonstrate the effectiveness of the proposed output‐feedback control scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
This paper studies the event‐triggered practical finite‐time output feedback stabilization problem for a class of uncertain nonlinear systems with unknown control gains. First, a reduced‐dimensional observer is employed to implement the reconstruction of the unavailable states. Furthermore, a novel event‐triggered output feedback control strategy is proposed based on the idea of backstepping design and sign function techniques. It is shown that the practical finite‐time stability of the closed‐loop systems is ensured by Lyapunov analysis and related stability criterion. Compared with the existing methods, the main advantage of this strategy is that the observer errors and event‐trigger errors can be processed simultaneously to achieve the practical finite‐time stability. Finally, an example is adopted to demonstrate the validity of the proposed scheme.  相似文献   

13.
This paper addresses the problem of event‐triggered stabilization for positive systems subject to input saturation, where the state variables are in the nonnegative orthant. An event‐triggered linear state feedback law is constructed. By expressing the saturated linear state feedback law on a convex hull of a group of auxiliary linear feedback laws, we establish conditions under which the closed‐loop system is asymptotically stable with a given set contained in the domain of attraction. On the basis of these conditions, the problem of designing the feedback gain and the event‐triggering strategy for attaining the largest domain of attraction is formulated and solved as an optimization problem with linear matrix inequality constraints. The problem of designing the feedback gain and the event‐triggering strategy for achieving fast transience response with a guaranteed size of the domain of attraction is also formulated and solved as an linear matrix inequality problem. The effectiveness of these results is then illustrated by numerical simulation.  相似文献   

14.
This paper considers global output feedback stabilization via sampled‐data control for a general class of nonlinear systems, which admit unknown control coefficients and nonderivable output function. A sector region of the output function is given by utilizing a technical lemma, and a sampled‐data controller is designed by combining a robust state stabilizer and a reduced‐order sampled‐data observer. By carefully choosing an appropriate sampling period, the proposed controller guarantees the globally asymptotical stability of the closed‐loop systems.  相似文献   

15.
申铁龙 《自动化学报》1994,20(6):743-749
提出了一种基于状态观测器的H∞鲁棒次优性能回复设计方案.对于具有不确定性的 被控对象,当存在满足给定的H∞鲁棒次优性能准则的状态反馈阵,且状态不可测量时,引入 适当的状态观测器可使闭环系统的H∞鲁棒次优性能任意接近状态反馈系统.  相似文献   

16.
In this paper, an output feedback control is proposed to solve the practical output regulation problem of a class of nonlinear systems. In the first step of the design procedure, two sets of coordinate transformations are used to convert the output regulation problem of the system in the strict‐feedback form into the regulation problem of the transformed system in the uncertain normal form. Then, for the resulting system, a state feedback in the cast of nested sliding mode control is designed. Finally, by using the nonlinear separation principle, the output feedback controller is achieved by substituting the estimated states, resulting from the high‐gain observer, instead of real states. It can be shown that the states of the closed‐loop system are ultimately bounded. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

17.
In this paper, we apply the active disturbance rejection control (ADRC) to stabilization for lower triangular nonlinear systems with large uncertainties. We first design an extended state observer (ESO) to estimate the state and the uncertainty, in real time, simultaneously. The constant gain and the time‐varying gain are used in ESO design separately. The uncertainty is then compensated in the feedback loop. The practical stability for the closed‐loop system with constant gain ESO and the asymptotic stability with time‐varying gain ESO are proven. The constant gain ESO can deal with larger class of nonlinear systems but causes the peaking value near the initial stage that can be reduced significantly by time‐varying gain ESO. The nature of estimation/cancelation makes the ADRC very different from high‐gain control where the high gain is used in both observer and feedback. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we study the robust output regulation problem for distributed parameter systems with infinite‐dimensional exosystems. The main purpose of this paper is to demonstrate the several advantages of using a controller that achieves polynomial closed‐loop stability, instead of a one stabilizing the closed‐loop system strongly. In particular, the most serious unresolved issue related to strongly stabilizing controllers is that they do not possess any known robustness properties. In this paper, we apply recent results on the robustness of polynomial stability of semigroups to show that, on the other hand, many controllers achieving polynomial closed‐loop stability are robust with respect to large and easily identifiable classes of perturbations to the parameters of the plant. We construct an observer based feedback controller that stabilizes the closed‐loop system polynomially and solves the robust output regulation problem. Subsequently, we derive concrete conditions for finite rank perturbations of the plant's parameters to preserve the closed‐loop stability and the output regulation property. The theoretical results are illustrated with an example where we consider the problem of robust output tracking for a one‐dimensional heat equation.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
In this article, an extended filtering high‐gain output feedback controller is developed for a class of uncertain nonlinear systems subject to external disturbances. The nonlinearities under consideration satisfy a semiglobal Lipschitz condition. The proposed control architecture integrates the extended state observer (ESO), high gain, and low‐pass filter together. None of them is used alone. The ESO can not only estimate the unknown internal state, but also deliver a good property of disturbance rejection simultaneously due to the presence of high gain. Since the high gain deteriorates the robustness of the system, a low‐pass filtering mechanism is added in the control law to filter away aggressive signals and recover the robustness. The filtering control law is designed to compensate the nonlinear uncertainties and deliver a good tracking performance with guaranteed stability. The matched uncertainties are canceled directly by adopting their opposite in the control signal, whereas a dynamic inversion of the system is required to eliminate the effect of the mismatched uncertainties on the output. Since the virtual reference system defines the best performance that can be achieved by the closed‐loop system, the uniform performance bounds are derived for the states and control signals via comparison. Numerical examples are provided to illustrate the effectiveness of the novel design via comparisons with the model reference adaptive control method and L1 adaptive controller.  相似文献   

20.
This paper investigates the problem of adaptive stabilization by output feedback for a class of uncertain nonlinear systems. The distinguishing feature of such a class of systems is the presence of uncertain control coefficient and unmeasured states dependent growth with growth rate of polynomial‐of‐output multiplying an unknown constant. First, new high‐gain K‐filters with two dynamic gains are introduced, and an appropriate state observer is constructed based on the K‐filters. Then, motivated by the universal control idea, the backstepping scheme is successfully developed for the adaptive output feedback control design. By appropriate choice of the design parameters, the global stability of the closed‐loop system can be guaranteed. Finally, numerical simulations are provided to illustrate the correctness of the theoretical results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号