首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper is focused on designing a distributed adaptive control scheme for a vehicular platoon with unknown bounded velocity/acceleration disturbances and unknown nonlinear dead‐zone inputs. Our aim is to design distributed adaptive controllers based on integral sliding mode control techniques that guarantee practical exponential convergence (i.e., exponential stability of an arbitrarily small neighborhood of zero) of the spacing errors and the string stability of the whole vehicular platoon. The contributions of this paper are that: (i) based on a modified constant time headway policy, the whole vehicular platoon is guaranteed to have string stability despite dead zone inputs; (ii) adaptive compensation terms are constructed to compensate for the time‐variant effects caused by unknown bounded velocity/acceleration disturbances, and unknown dead zone inputs; (iii) an efficient numerical method for avoiding the singularity problem of the control law is also proposed. Numerical simulation results show the validity and advantages of the proposed method are significantly higher traffic density and string stability. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This paper is concerned with the neural‐based decentralized adaptive control for interconnected nonlinear systems with prescribed performance and unknown dead zone outputs. In the controller design procedure, neural networks are employed to identify unknown auxiliary functions, and the control design obstacle caused by the output nonlinearity is resolved via introducing Nussbaum function. Then, a reliable neural decentralized adaptive control is developed through incorporating the backstepping method and the prescribed performance technique. In the light of Lyapunov stability theory, it is verified that the proposed control scheme can ensure that all the closed‐loop signals are bounded, and can also guarantee that the tracking errors remain within a small enough compact set with the prescribed performance bounds. Finally, some simulation results are given to illustrate the feasibility of the devised control strategy.  相似文献   

3.
In this paper, an actuator robust fault‐tolerant control is proposed for ocean surface vessels with parametric uncertainties and unknown disturbances. Using the backstepping technique and Lyapunov synthesis method, the adaptive tracking control is first developed by incorporating the actuator configuration matrix and considering actuator saturation constraints. The changeable actuator configuration matrix caused by rotatable propulsion devices is considered. Next, the actuator fault‐tolerant control is developed for the case when faults occur in propulsion devices of the ocean surface vessel. Rigorous stability analysis is carried out to show that the proposed fault‐tolerant control can guarantee the stability of the closed‐loop system under certain actuator failure. Finally, simulation studies are given to illustrate the effectiveness of the proposed adaptive tracking control and fault‐tolerant control. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, a bipartite consensus problem is considered for a high‐order multiagent system with cooperative‐competitive interactions and unknown time‐varying disturbances. A signed graph is used to describe the interaction network associated with the multiagent system. The unknown disturbances are expressed by linearly parameterized models, and distributed adaptive laws are designed to estimate the unknown parameters in the models. For the case that there is no exogenous reference system, a fully distributed adaptive control law is proposed to ensure that all the agents reach a bipartite consensus. For the other case that there exists an exogenous reference system, another fully distributed adaptive control law is also developed to ensure that all the agents achieve bipartite consensus on the state of the exogenous system. The stability of the closed‐loop multiagent systems with the 2 proposed adaptive control laws are analyzed under an assumption that the interaction network is structurally balanced. Moreover, the convergence of the parameter estimation errors is guaranteed with a persistent excitation condition. Finally, simulation examples are provided to demonstrate the effectiveness of the proposed adaptive bipartite consensus control laws for the concerned multiagent system.  相似文献   

5.
This paper presents two intelligent adaptive controllers, called self‐balancing and speed controllers, for self‐balancing and motion control, respectively, of an electric unicycle using fuzzy basis function networks (FBFN), which are employed to approximate model uncertainties and unknown friction between the wheel and the terrain surface. Both controllers are established based on the linearized model of the vehicle whose model uncertainties and parameter variations are caused by different riders and terrain. An adaptive backstepping controller together with online learning FBFN and sensing information of the rider's body inclination then is presented to achieve self‐balancing motion control. By adding an electronic throttle as the input device of speed commands, a decoupling sliding‐mode controller with online learning FBFN is proposed to accomplish self‐balancing and speed control. The performance and merit of the two proposed control methods are exemplified by conducting four simulations and three experiments on a laboratory‐built electric unicycle.  相似文献   

6.
针对一类控制方向未知的非线性切换多智能体系统, 本文研究了在不确定网络攻击下的安全控制问题. 网 络攻击破坏传感器真实数据, 导致系统真实信息无法获取且不能直接用于控制设计. 为此, 通过受攻击状态构建一 组新颖辅助变量来消除网络攻击造成的影响. 此外, 所研究的系统包含更一般的不确定性, 即未知控制方向, 未知常 值参数以及不确定攻击. 这些不确定性在设计过程中相互耦合. 利用Nussbaum型函数并设计自适应律补偿耦合后 的不确定性, 极大降低了系统复杂性. 通过系统性地迭代构造出共同Lyapunov函数, 提出了一套安全自适应控制方 法, 保证了受攻击系统在任意切换下达到渐近输出一致性. 最后, 数值仿真验证了该方法的有效性.  相似文献   

7.
A new adaptive learning control approach is proposed for a class of first‐order nonlinear systems with two unknown time‐varying parameters and an unknown time‐varying delay. By reconstructing the system equation, all unknown time‐varying terms, including the time‐varying delay, are combined into an unknown periodic time‐varying vector, which is estimated by a periodic adaptive mechanism. By constructing a Lyapunov–Krasovskii‐like composite energy function (CEF), we prove the boundedness of all signals and the convergence of the tracking error. The results are extended to two classes of high‐order nonlinear systems with mixed parameters. Three simulation examples are provided to illustrate the effectiveness of the control algorithms proposed in this paper. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

8.
In this paper, a novel robust adaptive trajectory tracking control scheme with prescribed performance is developed for underactuated autonomous underwater vehicles (AUVs) subject to unknown dynamic parameters and disturbances. A simple error mapping function is proposed in order to guarantee that the trajectory tracking error satisfies the prescribed performance. A novel additional control based on Nussbaum function is proposed to handle the underactuation of AUVs. The compounded uncertain item caused by the unknown dynamic parameters and disturbances is transformed into a linear parametric form with only single unknown parameter called virtual parameter. On the basis of the above, a novel robust adaptive trajectory tracking control law is developed using dynamic surface control technique, where the adaptive law online provides the estimation of the virtual parameter. Strict stability analysis indicates that the designed control law ensures uniform ultimate boundedness of the AUV trajectory tracking closed‐loop control system with prescribed tracking performance. Simulation results on an AUV in two different disturbance cases with dynamic parameter perturbation verify the effectiveness of our adaptive trajectory tracking control scheme.  相似文献   

9.
This paper gives a first try to the finite‐time control for nonlinear systems with unknown parametric uncertainty and external disturbances. The serious uncertainties generated by unknown parameters are compensated by skillfully using an adaptive control technique. Exact knowledge of the upper bounds of the disturbances is removed by employing a disturbance observer–based control method. Then, based on the disturbance observer–based control, backstepping technique, finite‐time adaptive control, and Lyapunov stability theory, a composite adaptive state‐feedback controller is strictly designed and analyzed, which guarantees the closed‐loop system to be practically finite‐time stable. Finally, both the practical and numerical examples are presented and compared to demonstrate the effectiveness of the proposed scheme.  相似文献   

10.
In this paper, a general method is developed to generate a stable adaptive fuzzy semi‐decentralized control for a class of large‐scale interconnected nonlinear systems with unknown nonlinear subsystems and unknown nonlinear interconnections. In the developed control algorithms, fuzzy logic systems, using fuzzy basis functions (FBF), are employed to approximate the unknown subsystems and interconnection functions without imposing any constraints or assumptions about the interconnections. The proposed controller consists of primary and auxiliary parts, where both direct and indirect adaptive approaches for the primary control part are aiming to maintain the closed‐loop stability, whereas the auxiliary control part is designed to attenuate the fuzzy approximation errors. By using Lyapunov stability method, the proposed semi‐decentralized adaptive fuzzy control system is proved to be globally stable, with converging tracking errors to a desired performance. Simulation examples are presented to illustrate the effectiveness of the proposed controller. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
This paper studies the problem of adaptive fuzzy asymptotic tracking control for multiple input multiple output nonlinear systems in nonstrict‐feedback form. Full state constraints, input quantization, and unknown control direction are simultaneously considered in the systems. By using the fuzzy logic systems, the unknown nonlinear functions are identified. A modified partition of variables is introduced to handle the difficulty caused by nonstrict‐feedback structure. In each step of the backstepping design, the symmetric barrier Lyapunov functions are designed to avoid the breach of the state constraints, and the issues of overparametrization and unknown control direction are settled via introducing two compensation functions and the property of Nussbaum function, respectively. Furthermore, an adaptive fuzzy asymptotic tracking control strategy is raised. Based on Lyapunov stability analysis, the developed control strategy can effectually ensure that all the system variables are bounded, and the tracking errors asymptotically converge to zero. Eventually, simulation results are supplied to verify the feasibility of the proposed scheme.  相似文献   

12.
This paper focuses mainly on decentralized intelligent tracking control for a class of high‐order stochastic nonlinear systems with unknown strong interconnected nonlinearity in the drift and diffusion terms. For the control of uncertain high‐order nonlinear systems, the approximation capability of RBF neural networks is utilized to deal with the difficulties caused by completely unknown system dynamics and stochastic disturbances, and only one adaptive parameter is constructed to overcome the overparameterization problem. Then, to address the problem from high‐order strong interconnected nonlinearities in the drift and diffusion terms with full states of the overall system, by using the monotonically increasing property of the bounding functions, the variable separation technique is achieved. Lastly, based on the Lyapunov stability theory, a decentralized adaptive neural control method is proposed to reduce the number of online adaptive learning parameters. It is shown that, for bounded initial conditions, the designed controller can ensure the semiglobally uniformly ultimate boundedness of the solution of the closed‐loop system and make the tracking errors eventually converge to a small neighborhood around the origin. Two simulation examples including a practical example are used to further illustrate the effectiveness of the design method.  相似文献   

13.
The paper addresses the design and the analysis of adaptive and robust‐adaptive control strategies for a complex recycled wastewater treatment bioprocess. The design procedures are developed under the realistic assumptions that the bacterial growth rates are unknown and the influent flow rates are time‐varying and uncertain, but some lower and upper bounds of these uncertainties are known. The proposed control structures are achieved by combining a linearizing control law with an appropriately (asymptotic or interval based) state observer and with a parameter estimator used for on‐line estimation of unknown kinetics. These approaches are applied to a complex time delay bioprocess resulting from the association of a recycling bioreactor with an electrochemical reactor. Numerical simulations are performed in order to validate the proposed algorithms.  相似文献   

14.
This paper addresses the problem of adaptive neural control for a class of uncertain stochastic pure‐feedback nonlinear systems with time‐varying delays. Major technical difficulties for this class of systems lie in: (1) the unknown control direction embedded in the unknown control gain function; and (2) the unknown system functions with unknown time‐varying delays. Based on a novel combination of the Razumikhin–Nussbaum lemma, the backstepping technique and the NN parameterization, an adaptive neural control scheme, which contains only one adaptive parameter is presented for this class of systems. All closed‐loop signals are shown to be 4‐Moment semi‐globally uniformly ultimately bounded in a compact set, and the tracking error converges to a small neighborhood of the origin. Finally, two simulation examples are given to demonstrate the effectiveness of the proposed control schemes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
This paper investigates the problem of adaptive control for a class of stochastic nonlinear time‐delay systems with unknown dead zone. A neural network‐based adaptive control scheme is developed by using the dynamic surface control (DSC) technique and the minimal learning parameters algorithm. The dynamic surface control technique, which can avoid the problem of ‘explosion of complexity’ inherent in the conventional backstepping design procedure, is first extended to the stochastic nonlinear time‐delay system with unknown dead zone. The unknown nonlinearities are approximated by the function approximation technique using the radial basis function neural network. For the purpose of reducing the numbers of parameters, which are updated online for each subsystem in the process of approximating the unknown functions, the minimal learning parameters algorithm is then introduced. Also, the adverse effects of unknown time‐delay are removed by using the appropriate Lyapunov–Krasovskii functionals. In addition, the proposed control scheme is systematically derived without requiring any information on the boundedness of the dead zone parameters and avoids the possible controller singularity problem in the approximation‐based adaptive control schemes with feedback linearization technique. It is shown that the proposed control approach can guarantee that all the signals of the closed‐loop system are bounded in probability, and the tracking errors can be made arbitrary small by choosing the suitable design parameters. Finally, a simulation example is provided to illustrate the performance of the proposed control scheme. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A robust adaptive tracking control scheme is presented for a class of multiple‐input and multiple‐output mechanical systems with unknown disturbances under actuator saturation. The unknown disturbances are expressed as the outputs of a linear exogenous system with unknown coefficient matrices. An adaptive disturbance observer is constructed for the online disturbance estimation. An actuator saturation compensator is introduced to attenuate the adverse effects of actuator saturation. The adaptive backstepping method is then applied to design the robust adaptive tracking control law. It is proved that the designed control law makes the system outputs track the desired trajectories and guarantees the global uniform ultimate stability of the closed‐loop control system. Simulations on a two‐link robotic manipulator verify the effectiveness of the proposed control scheme.  相似文献   

17.
Antidisturbance control problem is discussed for stochastic systems with multiple heterogeneous disturbances, which include the white noise and the disturbance with unknown frequencies and amplitudes. An adaptive disturbance observer is designed to estimate the disturbance with unknown frequencies and amplitudes, based on which, an adaptive disturbance observer‐based control scheme is proposed by combining adaptive technique and linear matrix inequality method. It is proved that the closed‐loop system is asymptotically bounded in mean square when multiple heterogeneous disturbances exist simultaneously and that the equilibrium is globally asymptotically stable in probability as additive disturbance disappears. Finally, two simulation examples, including a wind turbine system, are given to show the effectiveness of the proposed scheme.  相似文献   

18.
In this paper, an output‐feedback adaptive consensus tracking control scheme is proposed for a class of high‐order nonlinear multi‐agent systems. The agents are allowed to have unknown parameters, unknown nonlinearities, and input quantization simultaneously. The desired trajectory to be tracked is available for only a subset of agents, and only the relative outputs and the quantized inputs need to be measured or transmitted as signal exchange among neighbors regardless of the system order. By introducing a kind of high‐gain K‐filters and a smooth function, the effect among agents caused by the unknown nonlinearities is successfully counteracted, and all closed‐loop signals are proved to be globally uniformly bounded. Moreover, it is shown that the tracking errors converge to a residual set that can be made arbitrarily small. Simulation results on robot manipulators are presented to illustrate the effectiveness of the proposed scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
This paper focuses on the adaptive stabilization problem for a class of high‐order nonlinear systems with time‐varying uncertainties and unknown time‐delays. Time‐varying uncertain parameters are compensated by combining a function gain with traditional adaptive technique, and unknown multiple time‐delays are manipulated by the delicate choice of an appropriate Lyapunov function. With the help of homogeneous domination idea and recursive design, a continuous adaptive state‐feedback controller is designed to guarantee that resulting closed‐loop systems are globally uniformly stable and original system states converge to zero. The effectiveness of the proposed control scheme is illustrated by the stabilization of delayed neural network systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
A neural network (NN)‐based robust adaptive control design scheme is developed for a class of nonlinear systems represented by input–output models with an unknown nonlinear function and unknown time delay. By approximating on‐line the unknown nonlinear functions with a three‐layer feedforward NN, the proposed approach does not require the unknown parameters to satisfy the linear dependence condition. The control law is delay independent and possible controller singularity problem is avoided. It is proved that with the proposed neural control law, all the signals in the closed‐loop system are semiglobally bounded in the presence of unknown time delay and unknown nonlinearity. A simulation example is presented to demonstrate the method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号