首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S.J. Lim 《Thin solid films》2008,516(7):1523-1528
Recently, the application of ZnO thin films as an active channel layer of transparent thin film transistor (TFT) has become of great interest. In this study, we deposited ZnO thin films by atomic layer deposition (ALD) from diethyl Zn (DEZ) as a metal precursor and water as a reactant at growth temperatures between 100 and 250 °C. At typical growth conditions, pure ZnO thin films were obtained without any detectable carbon contamination. For comparison of key film properties including microstructure and chemical and electrical properties, ZnO films were also prepared by rf sputtering at room temperature. The microstructure analyses by X-ray diffraction have shown that both of the ALD and sputtered ZnO thin films have (002) preferred orientation. At low growth temperature Ts ≤ 125 °C, ALD ZnO films have high resistivity (> 10 Ω cm) with small mobility (< 3 cm2/V s), while the ones prepared at higher temperature have lower resistivity (< 0.02 Ω cm) with higher mobility (> 15 cm2/V s). Meanwhile, sputtered ZnO films have much higher resistivity than ALD ZnO at most of the growth conditions studied. Based upon the experimental results, the electrical properties of ZnO thin films depending on the growth conditions for application as an active channel layer of TFT were discussed focusing on the comparisons between ALD and sputtering.  相似文献   

2.
Area-selective atomic layer deposition (AS-ALD) is a bottom-up nanofabrication method delivering single atoms from a molecular precursor. AS-ALD enables self-aligned fabrication and outperforms lithography in terms of cost, resistance, and equipment prerequisites, but it requires pre-patterned substrates and is limited by insufficient selectivity and finite choice of substrates. These challenges are circumvented by direct patterning with atomic-layer additive manufacturing (ALAM) — a transfer of 3D-printing principles to atomic-layer manufacturing where a precursor supply nozzle enables direct patterning instead of blanket coating. The reduced precursor vapor consumption in ALAM as compared with ALD calls for the use of less volatile precursors by replacing diethylzinc used traditionally in ALD with bis(dimethylaminopropyl)zinc, Zn(DMP)2. The behavior of this novel ZnO ALAM process follows that of the corresponding ALD in terms of deposit quality and growth characteristics. The temperature window for self-limiting growth of stoichiometric, crystalline material is 200–250 °C. The growth rates are 0.9 Å per cycle in ALD (determined by spectroscopic ellipsometry) and 1.1 Å per pass in ALAM (imaging ellipsometry). The preferential crystal orientation increases with temperature, while energy-dispersive X-ray spectroscopic and XPS show that only intermediate temperatures deliver stoichiometric ZnO. A functional thin-film transistor is created from an ALAM-deposited ZnO line and characterized.  相似文献   

3.
To enhance the optical property of zinc oxide (ZnO) thin film, zinc sulfide (ZnS) thin films were formed on the interfaces of ZnO thin film as a passivation and a substrate layer. ZnO and ZnS thin films were deposited by atomic layer deposition (ALD) using diethyl zinc, H2O, and H2S as precursors. Investigations by X-ray diffraction and transmission electron microscopy showed that ZnS/ZnO/ZnS multi-layer thin films with clear boundaries were achieved by ALD and that each film layer had its own polycrystalline phase. The intensity of the photoluminescence of the ZnO thin film was enhanced as the thickness of the ZnO thin film increased and as ZnS passivation was applied onto the ZnO thin film interfaces.  相似文献   

4.
Sol-gel wet-chemical techniques were used to prepare ZnO, Al-ZnO (Al:Zn = 1:10 mol/mol) and Cu-ZnO (Cu:Zn = 1:10 mol/mol) thin films for characterization as functional layers for chemiresistive oxygen sensors. Cu and Al minor components influence the ZnO films' topography and their thermally induced chemical and structural evolution. As prepared (room temperature) films have the structure of layered basic zinc acetate, a lamellar ZnO precursor. Upon annealing at temperatures through 973 K, the films display similar chemical evolution patterns—temperatures above 773 K are needed to completely desorb solvents and decompose precursors. Cu facilitates c-axis orientation of the film as its structure matures, while Al slows its crystallization. Chemiresistive sensors, fabricated by coating thin film functional layers onto interdigitated electrode (IDE) transducers, were evaluated for their responses to oxygen at operating temperatures through 873 K. A ZnO/IDE sensor displays high sensitivity for O2 at an intermediate temperature, 673 K, reflecting an optimal balance between surface O2 coverage and carrier availability. At 1:10 mol/mol Cu:Zn and Al:Zn, the developing ZnO structure cannot accommodate all minor component atoms. Surplus atoms accumulate in independent phases at grain boundaries, contributing to both high base resistances (in N2) and low sensitivity to oxygen.  相似文献   

5.
High-quality, alumina thin films are extensively used as dielectrics, passivation layers, and barrier layers in electronics and many other applications. However, to achieve optimum stoichiometry and thus performance, the layers are often grown at elevated temperatures (>200 °C) using techniques such as atomic layer deposition (ALD). This is problematic for substrates or structures with low thermal budgets. Herein, alumina thin films are grown on 200 mm silicon substrates employing a versatile deposition method known as MVD at low deposition temperatures (35–150 °C). The chemical composition of the resulting films is investigated postdeposition using X-ray photoelectron spectroscopy (XPS) and variable angle spectroscopic ellipsometry, with fully stoichiometric Al2O3 achieved at deposition temperatures as low as 100 °C. Dielectric measurements confirm outstanding dielectric properties compared to typical thermal ALD layers deposited at much higher temperatures. This low-temperature deposition performance by considering the MVD reactor design and the “pump-type” regime of precursor delivery versus the “flow-type” regime of ALD is rationalized and understood. The results clearly demonstrate that alumina thin films grown with MVD are highly versatile for electronic applications and are of particular relevance and interest for the high-volume processing of dielectric, passivation, and barrier layers at low temperatures.  相似文献   

6.
Ti-Zn mixed oxide thin films, with thickness less than 50 nm, were grown with atomic layer deposition (ALD) technique at low temperature (90 °C) varying the composition. ALD is a powerful chemical technique to deposit thin films with thickness of few atomic layers. ALD oxide material growth is achieved by dosing sequentially the metal precursor and the oxidizing agent. Thanks to ALD nature of layer by layer growth it was possible to realize mixed metal, Ti and Zn, oxide thin films with controlled composition, simply by changing the number of cycles of each metal oxide layer. Structural and electrical properties of the prepared thin films were studied as a function of their composition. Synchrotron radiation X-ray diffraction technique was used to follow thin film crystallization during sample annealing, performed in situ. It was observed that the onset temperature of crystallization raises with Ti content, and sample structure was Zn2TiO4 phase. Electrical resistivity measurements were performed on crystalline samples, annealed at 600 °C, revealing an increase in resistivity with Ti content.  相似文献   

7.
Textured surface boron-doped zinc oxide (ZnO:B) thin films were directly grown via low pressure metal organic chemical vapor deposition (LP-MOCVD) on polyethylene terephthalate (PET) flexible substrates at low temperatures and high-efficiency flexible polymer silicon (Si) based thin film solar cells were obtained. High purity diethylzinc and water vapors were used as source materials, and diborane was used as an n-type dopant gas. P-i-n silicon layers were fabricated at ~ 398 K by plasma enhanced chemical vapor deposition. These textured surface ZnO:B thin films on PET substrates (PET/ZnO:B) exhibit rough pyramid-like morphology with high transparencies (T ~ 80%) and excellent electrical properties (Rs ~ 10 Ω at d ~ 1500 nm). Finally, the PET/ZnO:B thin films were applied in flexible p-i-n type silicon thin film solar cells (device structure: PET/ZnO:B/p-i-n a-Si:H/Al) with a high conversion efficiency of 6.32% (short-circuit current density JSC = 10.62 mA/cm2, open-circuit voltage VOC = 0.93 V and fill factor = 64%).  相似文献   

8.
A new technique is reported for the transformation of smooth nonpolar ZnO nanowire surfaces to zigzagged high‐index polar surfaces using polycrystalline ZnO thin films deposited by atomic layer deposition (ALD). The c‐axis‐oriented ZnO nanowires with smooth nonpolar surfaces are fabricated using vapor deposition method and subsequently coated by ALD with a ZnO particulate thin film. The synthesized ZnO–ZnO core–shell nanostructures are annealed at 800 °C to transform the smooth ZnO nanowires to zigzagged nanowires with high‐index polar surfaces. Ozone sensing response is compared for all three types of fabricated nanowire morphologies, namely nanowires with smooth surfaces, ZnO–ZnO core–shell nanowires, and zigzagged ZnO nanowires to determine the role of crystallographic surface planes on gas response. While the smooth and core–shell nanowires are largely non‐responsive to varying O3 concentrations in the experiments, zigzagged nanowires show a significantly higher sensitivity (ppb level) owing to inherent defect‐rich high‐index polar surfaces.  相似文献   

9.
Anhydrous zinc acetate (Zn(CH3COO)2) was found to be a suitable source material for growing thin films by the atomic layer epitaxy method. The growth of both ZnS and ZnO thin films with good reproducibility and uniform thickness from Zn(CH3COO)2 and H2S or H2O respectively was demonstrated.ZnS thin films showed excellent crystallinity and a high orientation of the growth direction. The ZnO thin films were mainly amorphous and the growth rate was approximately one-fifth of that found for ZnS growth.Some experiments were also carried out to dope the ZnS films with manganese and terbium, resulting in yellow and green luminescence respectively.  相似文献   

10.
This work presents deposition of Zn solution seed layer assisted growth of zinc oxide (ZnO) nanostructure layers by continuous spray pyrolysis reactor using lanthanides (Er and Eu) and metal (Al) influenced zinc acetate precursor solution. Dopants in precursors have influenced structural property, surface morphology and optical reflectance of resulting ZnO thin films which are supported by X-ray diffractometer, scanning electron microscope and reflectance measurements. Enhanced dispersion amongst nanorods is observed under the influence of Er and Al dopant in ZnO thin film. The change of precursor from Zinc acetate to Titanium tetraisopropoxide for Er doped precursor is helping to achieve better crystalline ZnO nanorods arrangement with increased homogenous growth, which results into improved light reflectance reduction of thin film. The experimental evidences of light reflectance from ZnO nanorods on Si surface is studied with the help of FDTD based Lumerical software package which can be a useful study for designing ZnO nanorods thin film in device purposes. The utility of ZnO layer by this reactor on low efficiency Si solar cell is also explored in improving device efficiency via increase of photocurrent.  相似文献   

11.
L.P. Dai  G. Chen  M. Wei  Y. Li 《Materials Letters》2007,61(16):3539-3541
A novel solid organic zinc fountain as a precursor for thin films of zinc oxide by single source chemical vapour deposition (SSCVD) had been prepared through simple procedures. To synthesize the precursor, zinc oxide and acetic acid of the molar ratio 2:3 were used to react with ethanol as solution in this experiment. The reaction products as the precursor obtained after reflux of the mixture solution were characterized by Fourier transform infrared spectroscopy analysis and thermogravimetric analysis, and the thin films on silicon substrate by SSCVD using the precursor were investigated by X-ray photoelectron spectroscopy analysis. All these provide evidence that the precursor has volatility and thermolysis properties suitable for SSCVD of ZnO thin films. It is interesting to note that the films are found to have a small amount of excess O, whereas ZnO films obtained by other techniques are often O deficient.  相似文献   

12.
Zinc blende structure γ-copper(I) chloride is a wide bandgap semiconductor with high exciton and biexciton binding energies. γ-CuCl has applications in UV-wavelength optoelectronic structures which can exploit these characteristics, such as 4-wave mixing and optical bistability. For these purposes, a controllable method of achieving thin films and nanocrystallite arrays is necessary. Atomic layer deposition (ALD) of nanocrystallites and thin films of γ-CuCl under restricted conditions has previously been demonstrated. This paper greatly extends the previous work and unequivocally confirms that ALD growth takes place over a range of deposition parameters, as characterised by growth saturation with increasing precursor dose, deposition rate independent of temperature and linear growth rate once a complete film has been formed. Arrays of nanocrystallites of different sizes can be controllably deposited by varying the number of ALD cycles within the initial nucleation region. In this region two distinct growth regimes have been observed depending on the length of the post-chloride precursor purge pulse. Long purge time results in retarded nucleation whereas short pulse time shows enhanced nucleation compared to a strictly linear process. The zinc blende γ-CuCl phase was confirmed with both X-ray analysis and also the signature excitonic Z1,2 and Z3 peaks in optical absorption, with no evidence of other impurities. This demonstrates that ALD is a suitable technique for the controllable deposition of thin films and arrays of nanocrystallites of CuCl which may facilitate the use of CuCl in thin film or nanocluster form for further exploration in optoelectronic and photonic applications.  相似文献   

13.
Zinc oxide thin films are deposited on polyethylene terephthalate (PET) by r.f. magnetron sputtering process from a ceramic target in oxygen–argon plasmas. Structural studies show that the thin films are highly oriented along the (0 0 2) direction of the würtzite phase when the oxygen partial pressure is lower than 0.2 Pa. The crystallinity is accentuated when the oxygen partial pressure of the sputtering gas is increased from 0 to 0.02 Pa. The composition of the films determined by Rutherford backscattering spectrometry (RBS) varies in a wide range and it is necessary to add a few amount of oxygen in the plasma composition to establish the stoichiometry. The oxygen partial pressure is found to influence also the microstructure and consequently the density of the coatings.Various cold plasmas are used to treat the polymer surface before the deposition of zinc oxide films. Wettability measurements show an increase in the polar component of the PET surface free energy whatever the nature of the plasma used for the treatment. This increase is more obvious with the carbon dioxide plasma. XPS examinations of the CO2 plasma treated PET surface in optimized conditions show a functionalisation of the polymer surface. The carbon dioxide plasma treatments of PET surface are found to enhance the peeling energy. The adhesion level depends also on the sputtering parameters, mainly the oxygen partial pressure and the r.f. power which influence the coating properties. The zinc oxide/PET interface is studied by XPS at the different stages of deposition and at various take-off angles. AFM observations show a regular growth of zinc oxide layers with smooth topographies on PET films. The different findings obtained from C1s, O1s, Zn2p3/2, Zn3p peaks and Auger Zn L3M4.5M4.5 peak are corroborated and discussed. New chemical bonds between the polymer and the further coming zinc oxide thin layer are evidenced.  相似文献   

14.
Zinc oxide thin films have been deposited at high growth rates (up to ~1 nm/s) by spatial atomic layer deposition technique at atmospheric pressure. Water has been used as oxidant for diethylzinc (DEZ) at deposition temperatures between 75 and 250 °C. The electrical, structural (crystallinity and morphology), and optical properties of the films have been analyzed by using Hall, four-point probe, X-ray diffraction, scanning electron microscopy, spectrophotometry, and photoluminescence, respectively. All the films have c-axis (100) preferential orientation, good crystalline quality and high transparency (~ 85%) in the visible range. By varying the DEZ partial pressure, the electrical properties of ZnO can be controlled, ranging from heavily n-type conductive (with 4 mOhm.cm resistivity for 250 nm thickness) to insulating. Combining the high deposition rates with a precise control of functional properties (i.e., conductivity and transparency) of the films, the industrially scalable spatial ALD technique can become a disruptive manufacturing method for the ZnO-based industry.  相似文献   

15.
Pung SY  Choy KL  Hou X  Shan C 《Nanotechnology》2008,19(43):435609
Preferred orientation of ZnO thin films deposited by the atomic layer deposition (ALD) technique could be manipulated by deposition temperature. In this work, diethyl zinc (DEZn) and deionized water (H(2)O) were used as a zinc source and oxygen source, respectively. The results demonstrated that (10.0) dominant ZnO thin films were grown in the temperature range of 155-220?°C. The c-axis crystal growth of these films was greatly suppressed. Adhesion of anions (such as fragments of an ethyl group) on the (00.2) polar surface of the ZnO thin film was believed to be responsible for this suppression. In contrast, (00.2) dominant ZnO thin films were obtained between 220 and 300?°C. The preferred orientations of (10.0) and (00.2) of the ZnO thin films were examined by XRD texture analysis. The texture analysis results agreed well with the alignments of ZnO nanowires (NWs) which were grown from these ZnO thin films. In this case, the nanosized crystals of ZnO thin films acted as seeds for the growth of ZnO nanowires (NWs) by chemical vapor deposition (CVD) process. The highly (00.2) textured ZnO thin films deposited at high temperatures, such as 280?°C, contained polycrystals with the c?axis perpendicular to the substrate surface and provided a good template for the growth of vertically aligned ZnO NWs.  相似文献   

16.
Zinc oxide thin films were deposited on polyethylene terephthalate (PET) substrate by the electron cyclotron resonance-metal organic chemical vapor deposition (ECR-MOCVD) method at room temperature with the addition of hydrogen to the reaction gas. Diethyl zinc (DEZn) as the source precursor, O2 as oxidizer and argon as carrier gas were used for the preparation of ZnO film. Scanning electron micrography and X-ray diffraction analyses revealed that the ZnO grains with size of ca. 20 nm had an elliptic cylindrical configuration and were highly c-axis-oriented. The hydrogen content strongly affected the crystallographic structure, electrical property, and composition, as well as the surface roughness of the zinc oxide films. The chemical composition and surface states of the films were further examined by RBS and XPS to find the reason for the different electrical resistivity with variation of H2/Ar ratio. It can be concluded that hydrogen content plays an important role in increasing the Hall mobility, hole concentration, and electron concentration in our experimental range.  相似文献   

17.
Atomic layer deposition (ALD) is a well‐established vapor‐phase technique for depositing thin films with high conformality and atomically precise control over thickness. Its industrial development has been largely confined to wafers and low‐surface‐area materials because deposition on high‐surface‐area materials and powders remains extremely challenging. Challenges with such materials include long deposition times, extensive purging cycles, and requirements for large excesses of precursors and expensive low‐pressure equipment. Here, a simple solution‐phase deposition process based on subsequent injections of stoichiometric quantities of precursor is performed using common laboratory synthesis equipment. Precisely measured precursor stoichiometries avoid any unwanted reactions in solution and ensure layer‐by‐layer growth with the same precision as gas‐phase ALD, without any excess precursor or purging required. Identical coating qualities are achieved when comparing this technique to Al2O3 deposition by fluidized‐bed reactor ALD (FBR‐ALD). The process is easily scaled up to coat >150 g of material using the same inexpensive laboratory glassware without any loss in coating quality. This technique is extended to sulfides and phosphates and can achieve coatings that are not possible using classic gas‐phase ALD, including the deposition of phosphates with inexpensive but nonvolatile phosphoric acid.  相似文献   

18.
A conductive network consisting of polyaniline (PANI) and PANI/nm-ZnO immobilized on the surfaces of poly(ethylene terephthalate) (PET) fabrics was synthesized by a route involving a wet-chemical technique and in-situ chemical oxidative polymerization procedures. Morphological, structural, thermal and electrical properties of the PET fabrics modified with PANI-ZnO composites were analyzed. X-ray diffraction (XRD) measurements of the composites revealed that the crystal structure of incorporated ZnO undergone a weak distortion during the polymerization reaction and the XRD pattern of PANI was predominate. Attenuated total reflection Fourier transform infrared spectroscopic studies indicated the presence of interaction between ZnO nanorods and molecular chains of PANI in the ZnO/PANI layers. Field emission scanning electron microscope images implied the thin composite layers showed a submicro-sized rod like network and the homogeneous distribution on the substrates. Thermogravimetric studies exhibited that the PET-ZnO/PANI composite had a higher thermal stability than anyone of PET and PET-PANI. The surface resistance of ZnO/PANI conductive films was found to be smaller than the PANI film, which was declined as aniline concentration in adsorption bath increased and reached a relatively low value when Zn(NO3)2 concentration was at 0.03 mol/L in the precursor solution.  相似文献   

19.
KTa0.65Nb0.35O3 (KTN) thin films were deposited on amorphous glass substrates using a range of single buffer layers such as indium tin oxide (ITO), zinc oxide (ZnO), 3 at% Al-doped ZnO (AZO), and 3 at% Ga-doped ZnO (GZO), as well as a variety of multi-buffer layers such as SrTiO3 (STO)/ITO, STO/ZnO, STO/AZO, and STO/GZO using a pulsed laser deposition system. All films showed a polycrystalline perovskite phase with the exception of all single buffer layers and STO/ITO multi-buffer layers. The STO buffer layer is important for crystallizing KTN films due to the similar lattice constant and same crystal structure. The optical transmittance of all films exhibited a transmittance ?90% in the wavelength range.  相似文献   

20.
ZnO thin films were prepared on fused silica from a single spin-coating deposition of a sol-gel prepared with anhydrous zinc acetate [Zn(C2H3O2)2], monoethanolamine [H2NC2H4OH ] and isopropanol. Crystallization annealing was performed over the range 500 to 650 °C. X-ray analysis showed that thin films were preferentially orientated along the [002] c-axis direction of the crystal. The films had a transparency of greater than 85% in the visible region for sol-gels with a zinc content of up to 0.7 M and exhibited absorption edges at ∼ 378 nm. The optical band-gap energy was evaluated to be 3.298-3.306 eV. Photoluminescence showed a strong emission centered at ca. 380 nm along with a broad yellow-orange emission centered at ca. 610 nm. Single step sol-gel thin film deposition in the film thickness range from 80 nm to 350 nm was demonstrated. The effect of sol-gel zinc concentration, film thickness and crystallization temperature on film microstructure, morphology and optical transparency is detailed. A process window for single spin coating deposition of c-axis oriented ZnO discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号