共查询到20条相似文献,搜索用时 15 毫秒
1.
Jiaojiao Zhu Yongtai Xu Yujun Fu Dewei Xiao Yali Li Lingyang Liu Yue Wang Qingnuan Zhang Junshuai Li Xingbin Yan 《Small (Weinheim an der Bergstrasse, Germany)》2020,16(17)
Dual ion batteries (DIBs) have recently attracted ever‐increasing attention owing to the potential advantages of low material cost and good environmental friendliness. However, the potential safety hazards, cost, and environmental concerns mainly resulted from the commonly used nonaqueous organic solvents severely hinder the practical application of DIBs. Herein, a hybrid aqueous/nonaqueous water‐in‐bisalt electrolyte with both broad electrochemical stability window and excellent safety performance is developed. The lithium‐based DIB assembled using KS6 graphite and niobium pentoxide as the active materials in the cathode and anode exhibits good comprehensive performance including capacity, cycling stability, rate performance, and medium discharge voltage. Initial capacities of ≈47.6 and 29.6 mAh g?1 retention after 300 cycles can be delivered with a medium discharge voltage of around 2.2 V in the voltage window of 0–3.2 V at the current density of 200 mA g?1. Good rate performance for the battery can be indicated by 29.7 mAh g?1 discharge capacity retention at 400 mA g?1. It is noteworthy that the coulombic efficiency of the battery can reach as high as 93.9%, which is comparable to that of the corresponding DIBs using nonaqueous organic electrolytes. 相似文献
2.
Ling Fan Kairui Lin Jue Wang Ruifang Ma Bingan Lu 《Advanced materials (Deerfield Beach, Fla.)》2018,30(20)
A low cost nonaqueous potassium‐based battery–supercapacitor hybrid device (BSH) is successfully established for the first time with soft carbon as the anode, commercialized activated carbon as the cathode, and potassium bis(fluoro‐slufonyl)imide in dimethyl ether as the electrolyte. This BSH reconciles the advantages of potassium ion batteries and supercapacitors, achieving a high energy density of 120 W h kg?1, a high power density of 599 W kg?1, a long cycle life of 1500 cycles, and an ultrafast charge/slow discharge performance (energy density and power density are calculated based on the total mass of active materials in the anode and cathode). This work demonstrates a great potential of applying the nonaqueous BSH for low cost electric energy storage systems. 相似文献
3.
4.
Kecheng Pan Lan Zhang Weiwei Qian Xiangkun Wu Kun Dong Haitao Zhang Suojiang Zhang 《Advanced materials (Deerfield Beach, Fla.)》2020,32(17):2000399
Ceramic/polymer hybrid solid electrolytes (HSEs) have attracted worldwide attentions because they can overcome defects by combining the advantages of ceramic electrolytes (CEs) and solid polymer electrolytes (SPEs). However, the interface compatibility of CEs and SPEs in HSE limits their full function to a great extent. Herein, a flexible ceramic/polymer HSE is prepared via in situ coupling reaction. Ceramic and polymer are closely combined by strong chemical bonds, thus the problem of interface compatibility is resolved and the ions can transport rapidly by an expressway. The as-prepared membrane demonstrates an ionic conductivity of 9.83 × 10−4 S cm−1 at room temperature and a high Li+ transference numbers of 0.68. This in situ coupling reaction method provides an effective way to resolve the problem of interface compatibility. 相似文献
5.
Rongxiang Hu Huayu Qiu Huanrui Zhang Peng Wang Xiaofan Du Jun Ma Tianyuan Wu Chenglong Lu Xinhong Zhou Guanglei Cui 《Small (Weinheim an der Bergstrasse, Germany)》2020,16(13)
Lithium (Li) metal batteries (LMBs) are enjoying a renaissance due to the high energy densities. However, they still suffer from the problem of uncontrollable Li dendrite and pulverization caused by continuous cracking of solid electrolyte interphase (SEI) layers. To address these issues, developing spontaneously built robust polymer‐reinforced SEI layers during electrochemical conditioning can be a simple yet effective solution. Herein, a robust homopolymer of cyclic carbonate urethane methacrylate is presented as the polymer matrix through an in situ polymerization method, in which cyclic carbonate units can participate in building a stable polymer‐integrated SEI layer during cycling. The as‐investigated gel polymer electrolyte (GPE) assembled LiCoO2/Li metal batteries exhibit a fantastic cyclability with a capacity retention of 92% after 200 cycles at 0.5 C (1 C = 180 mAh g?1), evidently exceeding that of the counterpart using liquid electrolytes. It is noted that the anionic ring‐opening polymerization of the cyclic carbonate units on the polymer close to the Li metal anodes enables a mechanically reinforced SEI layer, thus rendering excellent compatibility with Li anodes. The in situ formed polymer‐reinforced SEI layers afford a splendid strategy for developing high voltage resistant GPEs compatible with Li metal anodes toward high energy LMBs. 相似文献
6.
Yi Sun Pengcheng Shi Hongfa Xiang Xin Liang Yan Yu 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(14)
Rapidly developed Na‐ion batteries are highly attractive for grid energy storage. Nevertheless, the safety issues of Na‐ion batteries are still a bottleneck for large‐scale applications. Similar to Li‐ion batteries (LIBs), the safety of Na‐ion batteries is considered to be tightly associated with the electrolyte and electrode/electrolyte interphase. Although the knowledge obtained from LIBs is helpful, designing safe electrolytes and obtaining stable interphases in Na‐ion batteries is still a huge challenge. Therefore, it is of significance to investigate the key factors and develop new strategies for the development of high‐safety Na‐ion batteries. This comprehensive review introduces the recent efforts from nonaqueous electrolytes and interphase aspects of Na‐ion batteries, proposes their design strategies and requirements for improving safety characteristics, and discusses the potential issues for practical applications. The insight to formulate safe electrolytes and design the stable interphase for Na‐ion batteries with high safety is intended to be provided herein. 相似文献
7.
Xing Zhang Liangliang Wang Jing Peng Pengfei Cao Xiaosheng Cai Jiuqiang Li Maolin Zhai 《Advanced Materials Interfaces》2015,2(15)
A novel high‐performance flexible gel polymer electrolyte (FGPE) for supercapacitors is prepared by a freeze‐drying method. In the presence of 1‐butyl‐3‐methylimidazolium chloride (BMIMCl) ionic liquid, Li2SO4 can easily be added into poly(vinyl alcohol) (PVA) aqueous solution over a large concentration range. The resultant FGPE demonstrates considerably high ionic conductivity (37 mS cm−1) and a high fracture strain at 100% elongation at the optimal weight ratio of PVA:BMIMCl:Li2SO4 = 1:3:2.2. The supercapacitor fabricated with the resultant FGPE and activated carbon electrodes shows an electrode‐specific capacitance of 136 F g−1 with a stable operating voltage of 1.5 V, a maximum energy density of 10.6 Wh kg−1, and a power density of 3400 W kg−1. Double supercapacitors in series can efficiently drive a light emitting diode (LED) bulb for over 5 min and the retention of the specific capacitance reaches 90% even after 3000 charge–discharge cycles. The ionic conductivity and charge–discharge behaviors of the resultant FGPE are not affected by bending up to 180°. The flexible supercapacitor device shows only a small capacitance loss of 18% after 1000 cycles of 135° bending. 相似文献
8.
Hao Sun Guanzhou Zhu Yuanmin Zhu Meng-Chang Lin Hui Chen Yuan-Yao Li Wei Hsuan Hung Bo Zhou Xi Wang Yunxiang Bai Meng Gu Cheng-Liang Huang Hung-Chun Tai Xintong Xu Michael Angell Jing-Jong Shyue Hongjie Dai 《Advanced materials (Deerfield Beach, Fla.)》2020,32(26):2001741
Rechargeable lithium metal batteries are next generation energy storage devices with high energy density, but face challenges in achieving high energy density, high safety, and long cycle life. Here, lithium metal batteries in a novel nonflammable ionic-liquid (IL) electrolyte composed of 1-ethyl-3-methylimidazolium (EMIm) cations and high-concentration bis(fluorosulfonyl)imide (FSI) anions, with sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) as a key additive are reported. The Na ion participates in the formation of hybrid passivation interphases and contributes to dendrite-free Li deposition and reversible cathode electrochemistry. The electrolyte of low viscosity allows practically useful cathode mass loading up to ≈16 mg cm−2. Li anodes paired with lithium cobalt oxide (LiCoO2) and lithium nickel cobalt manganese oxide (LiNi0.8Co0.1Mn0.1O2, NCM 811) cathodes exhibit 99.6–99.9% Coulombic efficiencies, high discharge voltages up to 4.4 V, high specific capacity and energy density up to ≈199 mAh g−1 and ≈765 Wh kg−1 respectively, with impressive cycling performances over up to 1200 cycles. Highly stable passivation interphases formed on both electrodes in the novel IL electrolyte are the key to highly reversible lithium metal batteries, especially for Li–NMC 811 full batteries. 相似文献
9.
Junhong Guo Fan Feng Shiqiang Zhao Rui Wang Meng Yang Zhenhai Shi Yufeng Ren Zifeng Ma Suli Chen Tianxi Liu 《Small (Weinheim an der Bergstrasse, Germany)》2023,19(16):2206740
All-solid-state sodium metal batteries paired with solid polymer electrolytes (SPEs) are considered a promising candidate for high energy-density, low-cost, and high-safety energy storage systems. However, the low ionic conductivity and inferior interfacial stability with Na metal anode of SPEs severely hinder their practical applications. Herein, an anion-trapping 3D fiber network enhanced polymer electrolyte (ATFPE) is developed by infusing poly(ethylene oxide) matrix into an electrostatic spun fiber framework loading with an orderly arranged metal-organic framework (MOF). The 3D continuous channel provides a fast Na+ transport path leading to high ionic conductivity, and simultaneously the rich coordinated unsaturated cation sites exposed on MOF can effectively trap anions, thus regulating Na+ concentration distribution for constructing stable electrolyte/Na anode interface. Based on such advantages, the ATFPE exhibits high ionic conductivity and considerable Na+ transference number, as well as enhanced interfacial stability. Consequently, Na/Na symmetric cells using this ATFPE possess cyclability over 600 h at 0.1 mA cm−2 without discernable Na dendrites. Cooperated with Na3V2(PO4)3 cathode, the all-solid-state sodium metal batteries (ASSMBs) demonstrate significantly improved rate and cycle performances, delivering a high discharge capacity of 117.5 mAh g−1 under 0.1 C and rendering high capacity retention of 78.2% after 1000 cycles even at 1 C. 相似文献
10.
Chengzhao Luo Tong Shen Haoqing Ji Dong Huang Jie Liu Bingyu Ke Yihan Wu Yu Chen Chenglin Yan 《Small (Weinheim an der Bergstrasse, Germany)》2020,16(2)
Sodium dendrite growth is responsible for short circuiting and fire hazard of metal batteries, which limits the potential application of sodium metal anode. Sodium dendrite can be effectively suppressed by applying mechanically robust electrolyte in battery systems. Herein, a composite gel polymer electrolyte (GPE) is designed and fabricated, mainly consisting of graphene oxide (GO) and polyvinylidene fluoride‐hexafluoropropylene (PVDF‐HFP). With the addition of an appropriate amount of GO content, the compressive Young's modulus of 2 wt% GO+PVDF‐HFP (2‐GPH) composite GPE is greatly enhanced by a factor of 10, reaching 2.5 GPa, which is crucial in the suppression of sodium dendrite growth. As a result, uniform sodium deposition and ultralong reversible sodium plating/stripping (over 400 h) at high current density (5 mA cm?2) are achieved. Furthermore, as evidenced by molecular dynamics simulation, the GO content facilitates the sodium ion transportation, giving a high ionic conductivity of 2.3 × 10?3 S cm?1. When coupled with Na3V2(PO4)3 cathode in a full sodium metal battery, a high initial capacity of 107 mA h g?1 at 1 C (1 C = 117 mA g?1) is recorded, with an excellent capacity retention rate of 93.5% and high coulombic efficiency of 99.8% after 1100 cycles. 相似文献
11.
Dong-Myeong Shin Jonathan E. Bachman Mercedes K. Taylor Jovan Kamcev Jesse G. Park Michael E. Ziebel Ever Velasquez Nanette N. Jarenwattananon Gurmukh K. Sethi Yi Cui Jeffrey R. Long 《Advanced materials (Deerfield Beach, Fla.)》2020,32(10):1905771
Lithium-ion batteries have remained a state-of-the-art electrochemical energy storage technology for decades now, but their energy densities are limited by electrode materials and conventional liquid electrolytes can pose significant safety concerns. Lithium metal batteries featuring Li metal anodes, solid polymer electrolytes, and high-voltage cathodes represent promising candidates for next-generation devices exhibiting improved power and safety, but such solid polymer electrolytes generally do not exhibit the required excellent electrochemical properties and thermal stability in tandem. Here, an interpenetrating network polymer with weakly coordinating anion nodes that functions as a high-performing single-ion conducting electrolyte in the presence of minimal plasticizer, with a wide electrochemical stability window, a high room-temperature conductivity of 1.5 × 10−4 S cm−1, and exceptional selectivity for Li-ion conduction (tLi+ = 0.95) is reported. Importantly, this material is also flame retardant and highly stable in contact with lithium metal. Significantly, a lithium metal battery prototype containing this quasi-solid electrolyte is shown to outperform a conventional battery featuring a polymer electrolyte. 相似文献
12.
Yao Qin Ping Liu Qi Zhang Qi Wang Dan Sun Yougen Tang Yu Ren Haiyan Wang 《Small (Weinheim an der Bergstrasse, Germany)》2020,16(39)
Aqueous zinc‐ion batteries with low cost and inherent safety are considered to be the next‐generation energy storage device. However, they suffer from poor cycling stability and low coulombic efficiency caused by the serious zinc dendrites during the cycling. In this work, a porous water‐based filter membrane is first proposed as separator due to its good toughness and uniform pore distribution. The results demonstrate that the symmetrical cell using a filter membrane can cycle over 2600 h with a low voltage hysteresis of 47 mV. Moreover, an aqueous Zn//NaV3O8·1.5H2O cell based on the filter membrane is constructed, which demonstrates a high capacity retention of 83.8% after 5000 cycles at 5 A g?1. The mechanism research results reveal that the excellent dendrites inhibiting the ability of the filter membrane should be attributed to its uniform pore distribution rather than its composition. This work proposes a filter membrane separator and reveals the great influence of separator on the zinc stripping/plating process, which will shed light on the development of high‐performance aqueous zinc‐ion batteries. 相似文献
13.
Lithium‐metal batteries (LMBs), as one of the most promising next‐generation high‐energy‐density storage devices, are able to meet the rigid demands of new industries. However, the direct utilization of metallic lithium can induce harsh safety issues, inferior rate and cycle performance, or anode pulverization inside the cells. These drawbacks severely hinder the commercialization of LMBs. Here, an up‐to‐date review of the behavior of lithium ions upon deposition/dissolution, and the failure mechanisms of lithium‐metal anodes is presented. It has been shown that the primary causes consist of the growth of lithium dendrites due to large polarization and a strong electric field at the vicinity of the anode, the hyperactivity of metallic lithium, and hostless infinite volume changes upon cycling. The recent advances in liquid organic electrolyte (LOE) systems through modulating the local current density, anion depletion, lithium flux, the anode–electrolyte interface, or the mechanical strength of the interlayers are highlighted. Concrete strategies including tailoring the anode structures, optimizing the electrolytes, building artificial anode–electrolyte interfaces, and functionalizing the protective interlayers are summarized in detail. Furthermore, the challenges remaining in LOE systems are outlined, and the future perspectives of introducing solid‐state electrolytes to radically address safety issues are presented. 相似文献
14.
Qin Liu Zhimeng Hao Xiaobin Liao Xuelei Pan Shuxuan Li Lin Xu Liqiang Mai 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(30)
In situ monitoring the evolution of electrode materials in micro/nano scale is crucial to understand the intrinsic mechanism of rechargeable batteries. Here a novel on‐chip Langmuir–Blodgett nanowire (LBNW) microdevice is designed based on aligned and assembled MnO2 nanowire quasimonolayer films for directly probing Zn‐ion batteries (ZIBs) in real‐time. With an interdigital device configuration, a splendid Ohmic contact between MnO2 LBNWs and pyrolytic carbon current collector is demonstrated here, enabling a small polarization voltage. In addition, this work reveals, for the first time, that the conductance of MnO2 LBNWs monotonically increases/decreases when the ZIBs are charged/discharged. Multistep phase transition is mainly responsible for the mechanism of the ZIBs, as evidenced by combined high‐resolution transmission electron microscopy and in situ Raman spectroscopy. This work provides a new and adaptable platform for microchip‐based in situ simultaneous electrochemical and physical detection of batteries, which would promote the fundamental and practical research of nanowire electrode materials in energy storage applications. 相似文献
15.
Aobing Du Huanrui Zhang Zhonghua Zhang Jingwen Zhao Zili Cui Yimin Zhao Shanmu Dong Longlong Wang Xinhong Zhou Guanglei Cui 《Advanced materials (Deerfield Beach, Fla.)》2019,31(11)
A polymer‐based magnesium (Mg) electrolyte is vital for boosting the development of high‐safety and flexible Mg batteries by virtue of its enormous advantages, such as significantly improved safety, potentially high energy density, ease of fabrication, and structural flexibility. Herein, a novel polytetrahydrofuran‐borate‐based gel polymer electrolyte coupling with glass fiber is synthesized via an in situ crosslinking reaction of magnesium borohydride [Mg(BH4)2] and hydroxyl‐terminated polytetrahydrofuran. This gel polymer electrolyte exhibits reversible Mg plating/stripping performance, high Mg‐ion conductivity, and remarkable Mg‐ion transfer number. The Mo6S8/Mg batteries assembled with this gel polymer electrolyte not only work well at wide temperature range (?20 to 60 °C) but also display unprecedented improvements in safety issues without suffering from internal short‐circuit failure even after a cutting test. This in situ crosslinking approach toward exploiting the Mg‐polymer electrolyte provides a promising strategy for achieving large‐scale application of Mg‐metal batteries. 相似文献
16.
A Silica‐Aerogel‐Reinforced Composite Polymer Electrolyte with High Ionic Conductivity and High Modulus 下载免费PDF全文
Dingchang Lin Pak Yan Yuen Yayuan Liu Wei Liu Nian Liu Reinhold H. Dauskardt Yi Cui 《Advanced materials (Deerfield Beach, Fla.)》2018,30(32)
High‐energy all‐solid‐state lithium (Li) batteries have great potential as next‐generation energy‐storage devices. Among all choices of electrolytes, polymer‐based systems have attracted widespread attention due to their low density, low cost, and excellent processability. However, they are generally mechanically too weak to effectively suppress Li dendrites and have lower ionic conductivity for reasonable kinetics at ambient temperature. Herein, an ultrastrong reinforced composite polymer electrolyte (CPE) is successfully designed and fabricated by introducing a stiff mesoporous SiO2 aerogel as the backbone for a polymer‐based electrolyte. The interconnected SiO2 aerogel not only performs as a strong backbone strengthening the whole composite, but also offers large and continuous surfaces for strong anion adsorption, which produces a highly conductive pathway across the composite. As a consequence, a high modulus of ≈0.43 GPa and high ionic conductivity of ≈0.6 mS cm?1 at 30 °C are simultaneously achieved. Furthermore, LiFePO4–Li full cells with good cyclability and rate capability at ambient temperature are obtained. Full cells with cathode capacity up to 2.1 mAh cm?2 are also demonstrated. The aerogel‐reinforced CPE represents a new design principle for solid‐state electrolytes and offers opportunities for future all‐solid‐state Li batteries. 相似文献
17.
18.
Yu Zhang Shiqi Liu Yongjun Ji Jianmin Ma Haijun Yu 《Advanced materials (Deerfield Beach, Fla.)》2018,30(38)
Aluminum‐ion batteries (AIBs) are regarded as viable alternatives to lithium‐ion technology because of their high volumetric capacity, their low cost, and the rich abundance of aluminum. However, several serious drawbacks of aqueous systems (passive film formation, hydrogen evolution, anode corrosion, etc.) hinder the large‐scale application of these systems. Thus, nonaqueous AIBs show incomparable advantages for progress in large‐scale electrical energy storage. However, nonaqueous aluminum battery systems are still nascent, and various technical and scientific obstacles to designing AIBs with high capacity and long cycling life have not been resolved until now. Moreover, the aluminum cell is a complex device whose energy density is determined by various parameters, most of which are often ignored, resulting in failure to achieve the maximum performance of the cell. The purpose here is to discuss how to further develop reliable nonaqueous AIBs. First, the current status of nonaqueous AIBs is reviewed based on statistical data from the literature. The influence of parameters on energy density is analyzed, and the current situation and existing problems are summarized. Furthermore, possible solutions and concerns regarding the construction of reliable nonaqueous AIBs are comprehensively discussed. Finally, future research directions and prospects in the aluminum battery field are proposed. 相似文献
19.
Yang Liu Xiangcun Li Weiming Shen Yan Dai Wei Kou Wenji Zheng Xiaobin Jiang Gaohong He 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(32)
With the rapid growth of material innovations, multishelled hollow nanostructures are of tremendous interest due to their unique structural features and attractive physicochemical properties. Continued effort has been made in the geometric manipulation, composition complexity, and construction diversity of this material, expanding its applications. Energy storage technology has benefited from the large surface area, short transport path, and excellent buffering ability of the nanostructures. In this work, the general synthesis of multishelled hollow structures, especially with architecture versatility, is summarized. A wealth of attractive properties is also discussed for a wide area of potential applications based on energy storage systems, including Li‐ion/Na‐ion batteries, supercapacitors, and Li–S batteries. Finally, the emerging challenges and outlook for multishelled hollow structures are mentioned. 相似文献
20.
Weidong Zhou Zhaoxu Wang Yuan Pu Yutao Li Sen Xin Xiaofang Li Jianfeng Chen John B. Goodenough 《Advanced materials (Deerfield Beach, Fla.)》2019,31(4)
No single polymer or liquid electrolyte has a large enough energy gap between the empty and occupied electronic states for both dendrite‐free plating of a lithium‐metal anode and a Li+ extraction from an oxide host cathode without electrolyte oxidation in a high‐voltage cell during the charge process. Therefore, a double‐layer polymer electrolyte is investigated, in which one polymer provides dendrite‐free plating of a Li‐metal anode and the other allows a Li+ extraction from an oxide host cathode without oxidation of the electrolyte in a 4 V cell over a stable charge/discharge cycling at 65 °C; a poly(ethylene oxide) polymer contacts the lithium‐metal anode and a poly(N‐methyl‐malonic amide) contacts the cathode. All interfaces of the flexible, plastic electrolyte remain stable with no visible reduction of the Li+ conductivity on crossing the polymer/polymer interface. 相似文献