首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metal–organic frameworks (MOFs) with tunable compositions and morphologies are recognized as efficient self‐sacrificial templates to achieve function‐oriented nanostructured materials. Moreover, it is urgently needed to develop highly efficient noble metal‐free oxygen evolution reaction (OER) electrocatalysts to accelerate the development of overall water splitting green energy conversion systems. Herein, a facile and cost‐efficient strategy to synthesize Co9S8 nanoparticles‐embedded N/S‐codoped carbon nanofibers (Co9S8/NSCNFs) as highly active OER catalyst is developed. The hybrid precursor of core–shell ZIF‐wrapped CdS nanowires is first prepared and then leads to the formation of uniformly dispersed Co9S8/N, S‐codoped carbon nanocomposites through a one‐step calcination reaction. The optimal Co9S8/NSCNFs‐850 is demonstrated to possess excellent electrocatalytic performance for OER in 1.0 m KOH solution, affording a low overpotential of 302 mV to reach the current density of 10 mA cm?2, a small Tafel slope of 54 mV dec?1, and superior long‐term stability for 1000 cyclic voltammetry cycles. The favorable results raise a concept of exploring more MOF‐based nanohybrids as precursors to induce the synthesis of novel porous nanomaterials as non‐noble‐metal electrocatalysts for sustainable energy conversion.  相似文献   

2.
Here, a facile and novel strategy for the preparation of Cu‐doped RuO2 hollow porous polyhedra composed of ultrasmall nanocrystals through one‐step annealing of a Ru‐exchanged Cu‐BTC derivative is reported. Owing to the optimized surface configuration and altered electronic structure, the prepared catalyst displays a remarkable oxygen evolution reaction (OER) performance with low overpotential of 188 mV at 10 mA cm?2 in acidic electrolyte, an ultralow Tafel slope of 43.96 mV dec?1, and excellent stability in durability testing for 10 000 cycles, and continuous testing of 8 h at a current density of 10 mA cm?2. Density functional theory calculations reveal that the highly unsaturated Ru sites on the high‐index facets can be oxidized gradually and reduce the energy barrier of rate‐determining steps. On the other hand, the Cu dopants can alter the electronic structures so as to further improve the intrinsic OER activity.  相似文献   

3.
Searching for highly efficient bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) using nonnoble metal‐based catalysts is essential for the development of many energy conversion systems, including rechargeable fuel cells and metal–air batteries. Here, Co9–xFexS8/Co,Fe‐N‐C hybrids wrapped by reduced graphene oxide (rGO) (abbreviated as S‐Co9–xFexS8@rGO) are synthesized through a semivulcanization and calcination method using graphene oxide (GO) wrapped bimetallic zeolite imidazolate framework (ZIF) Co,Fe‐ZIF (CoFe‐ZIF@GO) as precursors. Benefiting from the synergistic effect of OER active CoFeS and ORR active Co,Fe‐N‐C in a single component, as well as high dispersity and enhanced conductivity derived from rGO coating and Fe‐doping, the obtained S‐Co9–xFexS8@rGO‐10 catalyst shows an ultrasmall overpotential of ≈0.29 V at 10 mA cm?2 in OER and a half‐wave potential of 0.84 V in ORR, combining a superior oxygen electrode activity of ≈0.68 V in 0.1 m KOH.  相似文献   

4.
Rationally designing active and durable catalysts for the oxygen evolution reaction (OER) is of primary importance in water splitting. Perovskite oxides (ABO3) with versatile structures and multiple physicochemical properties have triggered considerable interest in the OER. The leaching of A site cations can create nanostructures and amorphous motifs on the perovskite matrix, thus facilitating the OER process. However, selectively dissolving A site cations and simultaneously obtaining more active amorphous motifs derived from the B site cations remains a great challenge. Herein, a top‐down strategy is proposed to transform bulk crystalline perovskite (LaNiO3) into a nanostructured amorphous hydroxide by FeCl3 post‐treatment, resulting in an extremely low overpotential of 189 mV at 10 mA cm?2. The top‐down‐constructed amorphous catalyst with a large surface area has dual NiFe active sites, where high‐valence Ni3+‐based edge‐sharing octahedral frameworks are surrounded by interstitial distorted Fe octahedra and contribute to the superior OER performance. This top‐down strategy provides a valid way to design novel perovskite‐derived catalysts.  相似文献   

5.
The development of a high‐performance oxygen evolution reaction (OER) catalyst is pivotal for the practical realization of a water‐splitting system. Although an extensive search for OER catalysts has been performed in the past decades, cost‐effective catalysts remain elusive. Herein, an amorphous cobalt phyllosilicate (ACP) with layered crystalline motif prepared by a room‐temperature precipitation is introduced as a new OER catalyst; this material exhibits a remarkably low overpotential (η ≈ 367 mV for a current density of 10 mA cm?2). A structural investigation using X‐ray absorption spectroscopy reveals that the amorphous structure contains layered motifs similar to the structure of CoOOH, which is demonstrated to be responsible for the OER catalysis based on density functional theory calculations. However, the calculations also reveal that the local environment of the active site in the layered crystalline motif in the ACP is significantly modulated by the silicate, leading to a substantial reduction of η of the OER compared with that of CoOOH. This work proposes amorphous phyllosilicates as a new group of efficient OER catalysts and suggests that tuning of the catalytic activity by introducing redox‐inert groups may be a new unexplored avenue for the design of novel high‐performance catalysts.  相似文献   

6.
Electrochemical water splitting is a promising method for storing light/electrical energy in the form of H2 fuel; however, it is limited by the sluggish anodic oxygen evolution reaction (OER). To improve the accessibility of H2 production, it is necessary to develop an efficient OER catalyst with large surface area, abundant active sites, and good stability, through a low‐cost fabrication route. Herein, a facile solution reduction method using NaBH4 as a reductant is developed to prepare iron‐cobalt oxide nanosheets (Fex Coy ‐ONSs) with a large specific surface area (up to 261.1 m2 g?1), ultrathin thickness (1.2 nm), and, importantly, abundant oxygen vacancies. The mass activity of Fe1Co1‐ONS measured at an overpotential of 350 mV reaches up to 54.9 A g?1, while its Tafel slope is 36.8 mV dec?1; both of which are superior to those of commercial RuO2, crystalline Fe1Co1‐ONP, and most reported OER catalysts. The excellent OER catalytic activity of Fe1Co1‐ONS can be attributed to its specific structure, e.g., ultrathin nanosheets that could facilitate mass diffusion/transport of OH? ions and provide more active sites for OER catalysis, and oxygen vacancies that could improve electronic conductivity and facilitate adsorption of H2O onto nearby Co3+ sites.  相似文献   

7.
Rational design of high active and robust nonprecious metal catalysts with excellent catalytic efficiency in oxygen evolution reaction (OER) is extremely vital for making the water splitting process more energy efficient and economical. Among these noble metal‐free catalysts, transition‐metal‐based nanomaterials are considered as one of the most promising OER catalysts due to their relatively low‐cost intrinsic activities, high abundance, and diversity in terms of structure and morphology. Herein, a facile sugar‐blowing technique and low‐temperature phosphorization are reported to generate 3D self‐supported metal involved carbon nanostructures, which are termed as Co2P@Co/nitrogen‐doped carbon (Co2P@Co/N‐C). By capitalizing on the 3D porous nanostructures with high surface area, homogeneously dispersed active sites, the intimate interaction between active sites, and 3D N‐doped carbon, the resultant Co2P@Co/N‐C exhibits satisfying OER performance superior to CoO@Co/N‐C, delivering 10 mA cm?2 at overpotential of 0.32 V. It is worth noting that in contrast to the substantial current density loss of RuO2, Co2P@Co/N‐C shows much enhanced catalytic activity during the stability test and a 1.8‐fold increase in current density is observed after stability test. Furthermore, the obtained Co2P@Co/N‐C can also be served as an excellent nonprecious metal catalyst for methanol and glucose electrooxidation in alkaline media, further extending their potential applications.  相似文献   

8.
Metal oxides of earth‐abundant elements are promising electrocatalysts to overcome the sluggish oxygen evolution and oxygen reduction reaction (OER/ORR) in many electrochemical energy‐conversion devices. However, it is difficult to control their catalytic activity precisely. Here, a general three‐stage synthesis strategy is described to produce a family of hybrid materials comprising amorphous bimetallic oxide nanoparticles anchored on N‐doped reduced graphene oxide with simultaneous control of nanoparticle elemental composition, size, and crystallinity. Amorphous Fe0.5Co0.5Ox is obtained from Prussian blue analog nanocrystals, showing excellent OER activity with a Tafel slope of 30.1 mV dec?1 and an overpotential of 257 mV for 10 mA cm?2 and superior ORR activity with a large limiting current density of ?5.25 mA cm?2 at 0.6 V. A fabricated Zn–air battery delivers a specific capacity of 756 mA h gZn?1 (corresponding to an energy density of 904 W h kgZn?1), a peak power density of 86 mW cm?2 and can be cycled over 120 h at 10 mA cm?2. Other two amorphous bimetallic, Ni0.4Fe0.6Ox and Ni0.33Co0.67Ox , are also produced to demonstrate the general applicability of this method for synthesizing binary metal oxides with controllable structures as electrocatalysts for energy conversion.  相似文献   

9.
Non‐noble metal catalysts for high‐active electrocatalytic oxygen evolution reaction (OER) are essential in large‐scale application for water splitting. Herein, tricomponent metal phosphides with hollow structures are synthesized from cobalt‐contained metal organic frameworks (MOFs), i.e., ZIF‐67, by tailoring the feeding ratios of Ni and Fe, followed by a high‐temperature reduction and a subsequent phosphidation process. Excellent OER activity and long‐time stability are achieved in 1 m NaOH aqueous solution, with an overpotential of 329 mV at 10 mA cm?2 and Tafel slope of 48.2 mV dec?1, even superior to the noble metal‐based catalyst. It is evidenced that the formed (oxyhydr)oxide/phosphate species by in situ electrochemical surface oxidation are responsible for active OER. Accordingly, the simultaneous introduction of external Ni and Fe elements significantly influences the electronic structures of the parent metal phosphides, leading to the in situ electrochemical formation of surface active layer with decreased OER activation energy for greatly improved water oxidation performance. This electronic structure tuning strategy by introducing multicomponent metals demonstrates a versatile method to use MOFs as precursors for synthesizing high‐efficient water splitting electrocatalysts.  相似文献   

10.
A series of amorphous 3D Co‐based phosphate networks with hierarchical porosity, including the CoPi, the binary CoM1Pi and the trinary CoM1M2Pi (Mi = NiII, FeIII, CeIII) are produced via a novel bitemplate coprecipitation approach at room temperature. Interestingly, the integration of FeIII and CoII in the same network is found to significantly influence both the porosity and the electronic state of CoII. The CoFePi with a FeIII to CoII mole ratio of 0.91 has a specific surface area of 170 m2 g?1 and average pore size of 12.3 nm, larger than those of the CoPi network; furthermore, the CoII within such CoFePi exhibits a higher oxidation state than that in the CoPi. Due to such structural and compositional merits, the binary CoFePi network shows superior oxygen evolution reaction (OER) electrocatalytic activity, which gives an overpotential as low as 0.315 V at 10 mA cm?2 and a Tafel slope of 33 mV dec?1 in 0.10 m KOH. Additionally, the trinary CoFeNiPi demonstrates similar OER catalytic performance. The two phosphate networks also exhibit remarkable catalytic stability. In view of their easy preparation, superior activity, high stability, and low cost, such transition metal phosphate networks are promising catalysts for practical OER processes.  相似文献   

11.
Carbides are commonly regarded as efficient hydrogen evolution reaction (HER) catalysts, but their poor oxygen evolution reaction (OER) catalytic activities seriously limit their practical application in overall water splitting. Here, vertically aligned porous cobalt tungsten carbide nanosheet embedded in N‐doped carbon matrix (Co6W6C@NC) is successfully constructed on flexible carbon cloth (CC) as an efficient bifunctional electrocatalyst for overall water splitting via a facile metal–organic framework (MOF) derived method. The synergistic effect of Co and W atoms effectively tailors the electron state of carbide, optimizing the hydrogen‐binding energy. Thus Co6W6C@NC shows an enhanced HER performance with an overpotential of 59 mV at a current density of ?10 mA cm?2. Besides, Co6W6C@NC easily in situ transforms into tungsten actived cobalt oxide/hydroxide during the OER process, serving as OER active species, which provides an excellent OER activity with an overpotential of 286 mV at a current density of ?10 mA cm?2. The water splitting device, by applying Co6W6C@NC as both the cathode and anode, requires a low cell voltage of 1.585 V at 10 mA cm?2 with the great stability in alkaline solution. This work provides a feasible strategy to fabricate bimetallic carbides and explores their possibility as bifunctional catalysts toward overall water splitting.  相似文献   

12.
Highly active and durable air cathodes to catalyze both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are urgently required for rechargeable metal–air batteries. In this work, an efficient bifunctional oxygen catalyst comprising hollow Co3O4 nanospheres embedded in nitrogen‐doped carbon nanowall arrays on flexible carbon cloth (NC‐Co3O4/CC) is reported. The hierarchical structure is facilely derived from a metal–organic framework precursor. A carbon onion coating constrains the Kirkendall effect to promote the conversion of the Co nanoparticles into irregular hollow oxide nanospheres with a fine scale nanograin structure, which enables promising catalytic properties toward both OER and ORR. The integrated NC‐Co3O4/CC can be used as an additive‐free air cathode for flexible all‐solid‐state zinc–air batteries, which present high open circuit potential (1.44 V), high capacity (387.2 mAh g?1, based on the total mass of Zn and catalysts), excellent cycling stability and mechanical flexibility, significantly outperforming Pt‐ and Ir‐based zinc–air batteries.  相似文献   

13.
Nitrogen and sulfur‐codoped graphene composites with Co9S8 (NS/rGO‐Co) are synthesized by facile thermal annealing of graphene oxides with cobalt nitrate and thiourea in an ammonium atmosphere. Significantly, in 0.1 m KOH aqueous solution the best sample exhibits an oxygen evolution reaction (OER) activity that is superior to that of benchmark RuO2 catalysts, an oxygen reduction reaction (ORR) activity that is comparable to that of commercial Pt/C, and an overpotential of only ?0.193 V to reach 10 mA cm?2 for hydrogen evolution reaction (HER). With this single catalyst for oxygen reversible electrocatalysis, a potential difference of only 0.700 V is observed in 0.1 m KOH solution between the half‐wave potential in ORR and the potential to reach 10 mA cm?2 in OER; in addition, an overpotential of only 450 mV is needed to reach 10 mA cm?2 for full water splitting in the same electrolyte. The present trifunctional catalytic activities are markedly better than leading results reported in recent literature, where the remarkable trifunctional activity is attributed to the synergetic effects between N,S‐codoped rGO, and Co9S8 nanoparticles. These results highlight the significance of deliberate structural engineering in the preparation of multifunctional electrocatalysts for versatile electrochemical reactions.  相似文献   

14.

Designing high-efficient and low cost of electrodes with seamless integration of substrate and electrocatalyst particles is of significant concern for electrocatalytic water splitting. In this study, we actualized in situ growth of Co3O4 nanoneedles on titanium (Ti) mesh (denoted as Co3O4@Ti) by a simple combination of hydrothermal approach and subsequently calcination treatment under relatively low temperatures. The as-prepared Co3O4@Ti samples were evaluated as anodes for electrocatalytic oxygen evolution reaction (OER) in alkaline electrolyte. It demonstrates that the optimized Co3O4@Ti electrode displayed good OER activity with a small overpotential of 416 mV at a current density of 20 mA cm?2, which is on a par with commercial RuO2 catalyst (overpotential of 403 mV at 20 mA cm?2). The satisfactory OER performance of Co3O4@Ti electrode is largely attributed to the seamless integration of conductive Ti mesh substrate and the direct growth of Co3O4 nanoneedles on Ti mesh with sufficient active sites. This study suggests the potential application of Co3O4@Ti electrode as preeminent OER catalyst.

  相似文献   

15.
Portable water splitting devices driven by rechargeable metal–air batteries or solar cells are promising, however, their scalable usages are still hindered by lack of suitable multifunctional electrocatalysts. Here, a highly efficient multifunctional electrocatalyst is demonstrated, i.e., 2D nanosheet array of Mo‐doped NiCo2O4/Co5.47N heterostructure deposited on nickel foam (Mo‐NiCo2O4/Co5.47N/NF). The successful doping of non‐3d high‐valence metal into a heterostructured nanosheet array, which is directly grown on a conductive substrate endows the resultant catalyst with balanced electronic structure, highly exposed active sites, and binder‐free electrode architecture. As a result, the Mo‐NiCo2O4/Co5.47N/NF exhibits remarkable catalytic activity toward the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), affording high current densities of 50 mA cm?2 at low overpotentials of 310 mV for OER, and 170 mV for HER, respectively. Moreover, a low voltage of 1.56 V is achieved for the Mo‐NiCo2O4/Co5.47N/NF‐based water splitting cell to reach 10 mA cm?2. More importantly, a portable overall water splitting device is demonstrated through the integration of a water‐splitting cell and two Zn–air batteries (open‐circuit voltage of 1.43 V), which are all fabricated based on Mo‐NiCo2O4/Co5.47N/NF, demonstrating a low‐cost way to generate fuel energy. This work offers an effective strategy to develop high‐performance metal‐doped heterostructured electrode.  相似文献   

16.
The large‐scale commercial application of lithium–oxygen batteries (LOBs) is overwhelmed by the sluggish kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) associated with insoluble and insulated Li2O2. Herein, an elaborate design on a highly catalytic LOBs cathode constructed by N‐doped carbon nanotubes (CNT) with in situ encapsulated Co2P and Ru nanoparticles is reported. The homogeneously dispersed Co2P and Ru catalysts can effectively modulate the formation and decomposition behavior of Li2O2 during discharge/charge processes, ameliorating the electronically insulating property of Li2O2 and constructing a homogenous low‐impedance Li2O2/catalyst interface. Compared with Co/CNT and Ru/CNT electrodes, the Co2P/Ru/CNT electrode delivers much higher oxygen reduction triggering onset potential and higher ORR and OER peak current and integral areas, showing greatly improved ORR/OER kinetics due to the synergistic effects of Co2P and Ru. Li–O2 cells based on the Ru/Co2P/CNT electrode demonstrate improved ORR/OER overpotential of 0.75 V, excellent rate capability of 12 800 mAh g?1 at 1 A g?1, and superior cycle stability for more than 185 cycles under a restricted capacity of 1000 mAh g?1 at 100 mA g?1. This work paves an exciting avenue for the design and construction of bifunctional catalytic cathodes by coupling metal phosphides with other active components in LOBs.  相似文献   

17.
Here, ferrocene(Fc)‐incorporated cobalt sulfide (CoxSy) nanostructures directly grown on carbon nanotube (CNT) or carbon fiber (CF) networks for electrochemical oxygen evolution reaction (OER) using a facile one‐step solvothermal method are reported. The strong synergistic interaction between Fc‐CoxSy nanostructures and electrically conductive CNTs results in the superior electrocatalytic activity with a very small overpotential of ≈304 mV at 10 mA cm?2 and a low Tafel slope of 54.2 mV dec?1 in 1 m KOH electrolyte. Furthermore, the Fc‐incorporated CoxSy (FCoS) nanostructures are directly grown on the acid pretreated carbon fiber (ACF), and the resulting fabricated electrode delivers excellent OER performance with a low overpotential of ≈315 mV at 10 mA cm?2. Such superior OER catalytic activity can be attributed to 3D Fc‐CoxSy nanoarchitectures that consist of a high concentration of vertical nanosheets with uniform distribution of nanoparticles that afford a large number of active surface areas and edge sites. Besides, the tight contact interface between ACF substrate and Fc‐CoxSy nanostructures could effectively facilitate the electron transfer rate in the OER. This study provides valuable insights for the rational design of energy storage and conversion materials by the incorporation of other transition metal into metal sulfide/oxide nanostructures utilizing metallocene.  相似文献   

18.
Oxygen evolution reaction (OER) is of great significance for hydrogen production via water electrolysis, which, however, demands development of highly active, durable, and cost‐effective electrocatalysts in order to stride into a renewable energy era. Herein, highly efficient and long‐term durable OER by coupling B and P into an amorphous porous NiFe‐based electrocatalyst is reported, which possesses an amorphous porous metallic bulk structure and high corrosion resistance, and overcomes the issues associated with currently used catalyst nanomaterials. The PB codoping in the activated NiFePB (a‐NiFePB) delocalizes both Fe and Ni at Fermi energy level and enhances p–d hybridization as simulated by density functional theory calculations. The harmonized electronic structure and unique porous framework of the a‐NiFePB consequently improve the OER activity. The activated NiFePB thus exhibits an extraordinarily low overpotential of 197 mV for harvesting 10 mA cm?2 OER current density and 233 mV for reaching 100 mA cm?2 under chronopotentiometry condition, with the Tafel slope harmoniously conforming to 34 mV dec?1. Impressive long‐term stability of this new catalyst is evidenced by only limited activity decay after 1400 h operation at 100 mA cm?2. This work strategically directs a way for heading up a promising energy conversion alternative.  相似文献   

19.
The oxygen evolution reaction (OER) is pivotal in multiple gas‐involved energy conversion technologies, such as water splitting, rechargeable metal–air batteries, and CO2/N2 electrolysis. Emerging anion‐redox chemistry provides exciting opportunities for boosting catalytic activity, and thus mastering lattice‐oxygen activation of metal oxides and identifying the origins are crucial for the development of advanced catalysts. Here, a strategy to activate surface lattice‐oxygen sites for OER catalysis via constructing a Ruddlesden–Popper/perovskite hybrid, which is prepared by a facile one‐pot self‐assembly method, is developed. As a proof‐of‐concept, the unique hybrid catalyst (RP/P‐LSCF) consists of a dominated Ruddlesden–Popper phase LaSr3Co1.5Fe1.5O10‐δ (RP‐LSCF) and second perovskite phase La0.25Sr0.75Co0.5Fe0.5O3‐δ (P‐LSCF), displaying exceptional OER activity. The RP/P‐LSCF achieves 10 mA cm?2 at a low overpotential of only 324 mV in 0.1 m KOH, surpassing the benchmark RuO2 and various state‐of‐the‐art metal oxides ever reported for OER, while showing significantly higher activity and stability than single RP‐LSCF oxide. The high catalytic performance for RP/P‐LSCF is attributed to the strong metal–oxygen covalency and high oxygen‐ion diffusion rate resulting from the phase mixture, which likely triggers the surface lattice‐oxygen activation to participate in OER. The success of Ruddlesden–Popper/perovskite hybrid construction creates a new direction to design advanced catalysts for various energy applications.  相似文献   

20.
As an essential member of 2D materials, MXene (e.g., Ti3C2Tx) is highly preferred for energy storage owing to a high surface‐to‐volume ratio, shortened ion diffusion pathway, superior electronic conductivity, and neglectable volume change, which are beneficial for electrochemical kinetics. However, the low theoretical capacitance and restacking issues of MXene severely limit its practical application in lithium‐ion batteries (LIBs). Herein, a facile and controllable method is developed to engineer 2D nanosheets of negatively charged MXene and positively charged layered double hydroxides derived from ZIF‐67 polyhedrons into 3D hollow frameworks via electrostatic self‐assembling. After thermal annealing, transition metal oxides (TMOs)@MXene (CoO/Co2Mo3O8@MXene) hollow frameworks are obtained and used as anode materials for LIBs. CoO/Co2Mo3O8 nanosheets prevent MXene from aggregation and contribute remarkable lithium storage capacity, while MXene nanosheets provide a 3D conductive network and mechanical robustness to facilitate rapid charge transfer at the interface, and accommodate the volume expansion of the internal CoO/Co2Mo3O8. Such hollow frameworks present a high reversible capacity of 947.4 mAh g?1 at 0.1 A g?1, an impressive rate behavior with 435.8 mAh g?1 retained at 5 A g?1, and good stability over 1200 cycles (545 mAh g?1 at 2 A g?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号