首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
    
Aerogels are the least dense and most porous materials known to man, with potential applications from lightweight superinsulators to smart energy materials. To date their use has been seriously hampered by their synthesis methods, which are laborious and expensive. Taking inspiration from the life cycle of the damselfly, a novel ambient pressure‐drying approach is demonstrated in which instead of employing low‐surface‐tension organic solvents to prevent pore collapse during drying, sodium bicarbonate solution is used to generate pore‐supporting carbon dioxide in situ, significantly reducing energy, time, and cost in aerogel production. The generic applicability of this readily scalable new approach is demonstrated through the production of granules, monoliths, and layered solids with a number of precursor materials.  相似文献   

4.
5.
6.
7.
    
Composite polyurea/coacervate core/shell capsules are formed by coupling associative biopolymer phase separation with interfacial polymerization. They combine the excellent chemical stability of synthetic polymer barriers with the strong adhesive properties of protein‐based complex coacervates, inspired by biological underwater glues. To encapsulate volatile oil droplets, a primary coacervate hydrogel capsule is formed by a protein and weak polyanion and is reinforced with a polyurea membrane synthesized in situ at the interface between the coacervate and the oil core. The polyurea layer provides an excellent permeability barrier against diffusion of small volatile molecules while the coacervate portion of the shell enhances adhesion on the targeted substrate.  相似文献   

8.
    
Incapability of effective cross‐talk with biological environments has partly impaired the in vivo functionality of nanoparticles (NPs). Homing, biodistribution, and function of NPs could be engineered through regulating their interactions with in vivo niches. Inspired by communications in biological systems, endowing a “biological identity” to synthetic NPs is one approach to control their biodistribution, and immunonegotiation profiles. This synthetic‐biological combination is referred to as biohybrid NPs, which comprise both i) engineerable, readily producible, and trackable synthetic NPs as well as ii) biological moieties with the capability to cross‐talk with immunological barriers. Here, the latest understanding on the in vivo interactions of NPs, biological barriers they face, and emerging methods for quantitative measurements of NPs' biodistribution are reviewed. Some key biomolecules that have emerged as negotiators with the immune system in the context of cancer and autoimmunity, and their inspirations on biohybrid NPs are introduced. Critical design considerations for efficient cross‐talk between NPs and innate and adaptive immunity followed by hybridization methods are also discussed. Finally, clinical translation challenges and future perspectives regarding biohybrid NPs are discussed.  相似文献   

9.
    
Protein‐based fibers are used by nature as high‐performance materials in a wide range of applications, including providing structural support, creating thermal insulation, and generating underwater adhesives. Such fibers are commonly generated through a hierarchical self‐assembly process, where the molecular building blocks are geometrically confined and aligned along the fiber axis to provide a high level of structural robustness. Here, this approach is mimicked by using a microfluidic spinning method to enable precise control over multiscale order during the assembly process of nanoscale protein nanofibrils into micro‐ and macroscale fibers. By varying the flow rates on chip, the degree of nanofibril alignment can be tuned, leading to an orientation index comparable to that of native silk. It is found that the Young's modulus of the resulting fibers increases with an increasing level of nanoscale alignment of the building blocks, suggesting that the mechanical properties of macroscopic fibers can be controlled through varying the level of ordering of the nanoscale building blocks. Capitalizing on strategies evolved by nature, the fabrication method allows for the controlled formation of macroscopic fibers and offers the potential to be applied for the generation of further novel bioinspired materials.  相似文献   

10.
    
In this review a strategy for the design of bioinspired, smart, multiscale interfacial (BSMI) materials is presented and put into context with recent progress in the field of BSMI materials spanning natural to artificial to reversibly stimuli‐sensitive interfaces. BSMI materials that respond to single/dual/multiple external stimuli, e.g., light, pH, electrical fields, and so on, can switch reversibly between two entirely opposite properties. This article utilizes hydrophobicity and hydrophilicity as an example to demonstrate the feasibility of the design strategy, which may also be extended to other properties, for example, conductor/insulator, p‐type/n‐type semiconductor, or ferromagnetism/anti‐ferromagnetism, for the design of other BSMI materials in the future.  相似文献   

11.
    
Eight structural elements in biological materials are identified as the most common amongst a variety of animal taxa. These are proposed as a new paradigm in the field of biological materials science as they can serve as a toolbox for rationalizing the complex mechanical behavior of structural biological materials and for systematizing the development of bioinspired designs for structural applications. They are employed to improve the mechanical properties, namely strength, wear resistance, stiffness, flexibility, fracture toughness, and energy absorption of different biological materials for a variety of functions (e.g., body support, joint movement, impact protection, weight reduction). The structural elements identified are: fibrous, helical, gradient, layered, tubular, cellular, suture, and overlapping. For each of the structural design elements, critical design parameters are presented along with constitutive equations with a focus on mechanical properties. Additionally, example organisms from varying biological classes are presented for each case to display the wide variety of environments where each of these elements is present. Examples of current bioinspired materials are also introduced for each element.  相似文献   

12.
    
Fish, reptiles, and mammals can possess flexible dermal armor for protection. Here we seek to find the means by which Nature derives its protection by examining the scales from several fish (Atractosteus spatula, Arapaima gigas, Polypterus senegalus, Morone saxatilis, Cyprinius carpio), and osteoderms from armadillos, alligators, and leatherback turtles. Dermal armor has clearly been developed by convergent evolution in these different species. In general, it has a hierarchical structure with collagen fibers joining more rigid units (scales or osteoderms), thereby increasing flexibility without significantly sacrificing strength, in contrast to rigid monolithic mineral composites. These dermal structures are also multifunctional, with hydrodynamic drag (in fish), coloration for camouflage or intraspecies recognition, temperature and fluid regulation being other important functions. The understanding of such flexible dermal armor is important as it may provide a basis for new synthetic, yet bioinspired, armor materials.  相似文献   

13.
14.
15.
    
Although many approaches have been developed to encapsulate functional species into polyelectrolyte films, few of them can effectively control the final distribution of these ones. Herein, a facile strategy is proposed to spatially control the encapsulation of guest species by locally regulating the structural transformation of polyelectrolyte films. Patterned porosity is created within a film by cross‐linking it selectively and then immersing it in an acidic solution. These porous regions can exhibit significantly different properties from other regions, including the ability to wick solution, a greater retention of guest species, and the capability of structural transformation. After loading guest species, the porous structures can be eliminated at saturated humidity to encapsulate the guest species into the film, leading to their patterned distribution across the film. Based on this method, various guest species, ranging from fluorescent dyes to nanoparticles, can be locally encapsulated into polyelectrolyte film, forming distinct patterns of arbitrary shapes and sizes and thus paving the way for further applications.  相似文献   

16.
明胶-阿拉伯树胶基电子墨水微胶囊的制备及其显示性能   总被引:1,自引:0,他引:1  
以明胶-阿拉伯树胶为壁材,Span80为稳定剂,四氯乙烯为分散介质,聚甲基丙烯酸甲酯(PMMA)表面改性的TiO2为显示颗粒,采用复凝聚法制备了红白显示电子墨水微胶囊,研究了SDS对所制备电子墨水微胶囊的影响,并将微胶囊涂覆在ITO玻璃上,制成电子墨水显示原型器件.在直流电场驱动下,电子墨水显示原型器件实现了文字显示.  相似文献   

17.
    
The major cause of synthetic vessel failure is thrombus and neointima formation. To prevent these problems the creation of a continuous and elongated endothelium inside lumen vascular grafts might be a promising solution for tissue engineering. Different micro‐ and nano‐surface topographic cues including grooved micro‐patterns and electrospun fibers have been previously demonstrated to guide the uniform alignment of endothelial cells (ECs). Here, with a very simple and highly versatile approach we combined electrospinning with soft lithography to fabricate nanofibrous scaffolds with oriented fibers modulated by different micro‐grooved topographies. The effect of these scaffolds on the behavior of the ECs are analyzed, including their elongation, spreading, proliferation, and functioning using unpatterned random and aligned nanofibers (NFs) as controls. It is demonstrated that both aligned NFs and micro‐patterns effectively influence the cellular response, and that a proper combination of topographic parameters, exploiting the synergistic effects of micro‐scale and sub‐micrometer features, can promote EC elongation, allowing the creation of a confluent ECs monolayer in analogy with the natural endothelium as assessed by the positive expression of vinculin. Combining different micro‐ and nano‐topographic cues by complementary soft patterning and spinning technologies could open interesting perspectives for engineered vascular replacement constructions.  相似文献   

18.
聚乳酸与多糖都是生物可降解、生物相容性材料,将聚乳酸的力学性能优越性和多糖的生物学优越性能综合利用起来,设计生物仿生材料是一种制备生物医用材料的新手段。文中综合讨论了聚乳酸与多糖接枝改性的最新研究进展,同时对于这类生物仿生材料目前存在的问题以及前景进行了评估。  相似文献   

19.
    
Here, a smart fluid‐controlled surface is designed, via the rational integration of the unique properties of three natural examples, i.e., the unidirectional wetting behaviors of butterfly's wing, liquid‐infused “slippery” surface of the pitcher plant, and the motile microcilia of micro‐organisms. Anisotropic wettability, lubricated surfaces, and magnetoresponsive microstructures are assembled into one unified system. The as‐prepared surface covered by tilted microcilia achieves significant unidirectional droplet adhesion and sliding. Regulating by external magnet field, the directionality of ferromagnetic microcilia can be synergistically switched, which facilitates a continuous and omnidirectional‐controllable water delivery. This work opens an avenue for applications of anisotropic wetting surfaces, such as complex‐flow distribution and liquid delivery, and extend the design approach of multi‐bioinspiration integration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号