首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Fluorescence imaging in the second near‐infrared window (NIR‐II) is a new technique that permits visualization of deep anatomical features with unprecedented spatial resolution. Although attractive, effectively suppressing the interference signal of the background is still an enormous challenge for obtaining target‐specific NIR‐II imaging in the complex and dynamic physiological environment. Herein, dual‐pathological‐parameter cooperatively activatable NIR‐II fluorescence nanoprobes (HISSNPs) are developed whereby hyaluronic acid chains and disulfide bonds act as the “double locks” to lock the fluorescence‐quenched aggregation state of the NIR‐II fluorescence dyes for performing ultrahigh specific imaging of tumors in vivo. The fluorescence can be lit up only when the “double locks” are opened by reacting with the “dual smart keys” (overexpressed hyaluronidase and thiols in tumor) simultaneously. In vivo NIR‐II imaging shows that they reduce nonspecific activitation and achieve ultralow background fluorescence, which is 10.6‐fold lower than single‐parameter activatable probes (HINPs) in the liver at 15 h postinjection. Consequently, these “dual lock‐and‐key”‐controlled HISSNPs exhibit fivefold higher tumor‐to‐normal tissue ratio than “single lock‐and‐key”‐controlled HINPs at 24 h postinjection, attractively realizing ultrahigh specificity of tumor imaging. This is thought to be the first attempt at implementing ultralow background interference with the participation of multiple pathological parameters in NIR‐II fluorescence imaging.  相似文献   

2.
Recent years have witnessed significant progress in molecular probes for cancer diagnosis. However, the conventional molecular probes are designed to be “always‐on” by attachment of tumor‐targeting ligands, which limits their abilities to diagnose tumors universally due to the variations of targeting efficiency and complex environment in different cancers. Here, it is proposed that a color‐convertible, activatable probe is responding to a universal tumor microenvironment for tumor‐specific diagnosis without targeting ligands. Based on the significant hallmark of up‐regulated hydrogen peroxide (H2O2) in various tumors, a novel unimolecular micelle constructed by boronate coupling of a hydrophobic hyperbranched poly(fluorene‐co‐2,1,3‐benzothiadiazole) core and many hydrophilic poly(ethylene glycol) arms is built as an H2O2‐activatable fluorescent nanoprobe to delineate tumors from normal tissues through an aggregation‐enhanced fluorescence resonance energy transfer strategy. This color‐convertible, activatable nanoprobe is obviously blue‐fluorescent in various normal cells, but becomes highly green‐emissive in various cancer cells. After intravenous injection to tumor‐bearing mice, green fluorescent signals are only detected in tumor tissue. These observations are further confirmed by direct in vivo and ex vivo tumor imaging and immunofluorescence analysis. Such a facile and simple methodology without targeting ligands for tumor‐specific detection and imaging is worthwhile to further development.  相似文献   

3.
Current antigen‐encapsulated multifunctional nanovaccines for oncotherapy suffer from limited antigen loading efficiency, low yield, tedious manufacture, and systemic toxicity. Here, an antigen‐directed strategy for the fabrication of multifunctional nanovaccine with ultrahigh antigen loading efficiency in a facile way for tumor photothermal‐immunotherapy is shown. As a proof of concept, a model antigen ovalbumin (OVA) is used as a natural carrier to load a representative theranostic agent indocyanine green (ICG). Mixing OVA and ICG in aqueous solution gives the simplest multifunctional nanovaccine so far. The nanovaccine owns antigen loading efficiency of 80.8%, high yield of >90%, intense near‐infrared absorption and fluorescence, excellent reproducibility, good aqueous solubility and stability, and favorable biocompatibility. These merits not only guarantee sensitive labeling/tracking and efficient stimulation of dendritic cells, but also reliable imaging‐guided photothermal‐immunotherapy of tumors and tumor prevention. The proposed strategy provides a facile and robust method for large‐scale and reproducible fabrication of multifunctional nanovaccines with ultrahigh antigen loading efficiency for tumor therapy.  相似文献   

4.
Multifunctional nanomaterials with efficient tumor‐targeting and high antitumor activity are highly anticipated in the field of cancer therapy. In this work, a synergetic tumor‐targeted, chemo‐photothermal combined therapeutic nanoplatform based on a dynamically PEGylated, borate‐coordination‐polymer‐coated polydopamine nanoparticle (PDA@CP‐PEG) is developed. PEGylation on the multifunctional nanoparticles is dynamically achieved via the reversible covalent interaction between the surface phenylboronic acid (PBA) group and a catechol‐containing poly(ethylene glycol) (PEG) molecule. Due to the acid‐labile PBA/catechol complex and the weak‐acid‐stable PBA/sialic acid (SA) complex, the nanoparticles can exhibit a synergetic targeting property for the SA‐overexpressed tumor cells, i.e., the PEG‐caused “passive targeting” and PBA‐triggered “active targeting” under the weakly acidic tumor microenvironment. In addition, the photothermal effect of the polydopamine core and the doxorubicin‐loading capacity of the porous coordination polymer layer endow the nanoparticles with the potential for chemo‐photothermal combination therapy. As expected, the in vitro and in vivo studies both verify that the multifunctional nanoparticles possess relatively lower systematic toxicity, efficient tumor targeting ability, and excellent chemo‐photothermal activity for tumor inhibition. It is believed that these multifunctional nanoparticles with synergetic tumor targeting property and combined therapeutic strategies would provide an insight into the design of a high‐efficiency antitumor nanoplatform for potential clinical applications.  相似文献   

5.
The novel application of two‐dimensional (2D) single‐layer ternary chalcogenide nanosheets as “capture‐release” fluorescence‐based biomolecular nanosensors is demonstrated. Fluorescently labeled biomolecular probe is first captured by the ultrathin Ta2NiS5 nanosheets and then released upon adding analyte containing a target biomolecule due to the higher probe‐target affinity. Here, the authors use a nucleic acid probe for the model target biomolecule Plasmodium lactate dehydrogenase, which is an important malarial biomarker. The ultrathin Ta2NiS5 nanosheet serves as a highly efficient fluorescence quencher and the nanosensor developed from the nanosheet is highly sensitive and specific toward the target biomolecule. Apart from the specificity toward the target biomolecule in homogeneous solutions, the developed nanosensor is capable of detecting and differentiating the target in heterogeneous solutions consisting of either a mixture of biomolecules or serum, with exceptional specificity. The simplicity of the “capture‐release” method, by eliminating the need for preincubation of the probe with the test sample, may facilitate further development of portable and rapid biosensors. The authors anticipate that this ternary chalcogenide nanosheet‐based biomolecular nanosensor will be useful for the rapid detection and differentiation of a wide range of chemical and biological species.  相似文献   

6.
The development of theranostic systems capable of diagnosis, therapy, and target specificity is considerably significant for accomplishing personalized medicine. Here, a multifunctional rattle‐type nanoparticle (MRTN) as an effective biological bimodal imaging and tumor‐targeting delivery system is fabricated, and an enhanced loading ability of hydrophobic anticancer drug (paclitaxel) is also realized. The rattle structure with hydrophobic Fe3O4 as the inner core and mesoporous silica as the shell is obtained by one‐step templates removal process, and the size of interstitial hollow space can be easily adjusted. The Fe3O4 core with hydrophobic poly(tert‐butyl acrylate) (PTBA) chains on the surface is not only used as a magnetic resonance imaging (MRI) agent, but contributes to improving hydrophobic drug loading amount. Transferrin (Tf) and a near‐infrared fluorescent dye (Cy 7) are successfully modified on the surface of the nanorattle to increase the ability of near‐infrared fluorescence (NIRF) imaging and tumor‐targeting specificity. In vivo studies show the selective accumulation of MRTN in tumor tissues by Tf‐receptor‐mediated endocytosis. More importantly, paclitaxel‐loaded MRTN shows sustained release character and higher cytotoxicity than the free paclitaxel. This theranostic nanoparticle as an effective MRI/NIRF bimodal imaging probe and drug delivery system shows great potential in cancer diagnosis and therapy.  相似文献   

7.
In this work, a matrix metalloproteinase (MMP)‐triggered tumor targeted mesoporous silica nanoparticle (MSN) is designed to realize near‐infrared (NIR) photothermal‐responsive drug release and combined chemo/photothermal tumor therapy. Indocyanine green (ICG) and doxorubicin (DOX) are both loaded in the MSN modified with thermal‐cleavable gatekeeper (Azo‐CD), which can be decapped by ICG‐generated hyperthermia under NIR illumination. A peptidic sequence containing a short PEG chain, matrix metalloproteinase (MMP) substrate (PLGVR) and tumor cell targeting motif (RGD) are further decorated on the MSN via a host–guest interaction. The PEG chain can protect the MSN during the circulation and be cleaved off in the tumor tissues with overexpressed MMP, and then the RGD motif is switched on to target tumor cells. After the tumor‐triggered targeting process, the NIR irradiation guided by ICG fluorescence can trigger cytosol drug release and realize combined chemo/photothermal therapy.  相似文献   

8.
The immobilization of fluorescent photoinduced electron transfer (PET) switches/sensors into solid state, which usually cannot maintain their identical properties in solution, has remained a big challenge. Herein, a water‐stable anthracene and maleimide appended zirconium‐based‐metal–organic framework (Zr‐MOF; UiO‐68‐An/Ma) is reported. Unlike the regular intramolecular “fluorophore–spacer–receptor” format, the separated immobilization of fluorescent (anthracene) and acceptor (maleimide) groups into the framework of a multivariate MOF can also favor a pseudo‐intramolecular fluorescent PET process, resulting in UiO‐68‐An/Ma with very weak fluorescence. Interestingly, after Diels–Alder reaction or thiol‐ene reaction of maleimide groups, the pseudo‐intramolecular fluorescent PET process in UiO‐68‐An/Ma fails and the solid‐state fluorescence of the crystals is recovered. In addition, UiO‐68‐An/Ma shows an interesting application as solid‐state fluorescent turn‐on sensor for biothiols, with the naked eye response at a low concentration of 50 µmol L?1 within 5 min. This study represents a general strategy to enable the efficient tuning of fluorescent PET switches/sensors in solid state, and considering the fluorescence of the PET‐based MOFs can be restored after addition of analyte/target species, this research will definitely inspire to construct stimuli‐responsive fluorescent MOFs for interesting applications (e.g., logic gate) in future.  相似文献   

9.
To achieve an excellent delivery effect of drug, stimuli‐responsive nano “gate” with physical blockage units is usually constructed on the surface of the mesoporous silica nanocarriers (MSNs). In nature, the aquaporins in cell membrane can control the transport of water molecules by regulating the channel wettability, which is resulted from the conformational change of amino acids in the channel. Inspired by this phonomenon, herein a new concept of free‐blockage controlled release system is proposed, which is achieved by controlling the wettability of the internal surface of nanopores on MSNs. Such a new system is different from the physical‐blockage controlled release system, which bypasses the use of nano “gate” and overcomes the limitations of traditional physical blockage system. Moreover, further studies have shown that the system can selectively release the entrapped doxorubicin in human breast adenocarcinoma (MCF‐7) cells triggered by intracellular reactive oxygen species (ROS) but not in normalhuman umbilical vein endothelial cells (HUVECs) containing ROS with low levels. The wettability‐determined free‐blockage controlled release system is simple and effective, and it can also be triggered by intracellular biological stimuli, which provides a new approach for the future practical application of drug delivery and cancer therapy.  相似文献   

10.
Cerenkov radiation (CR) from radionuclides can act as a built‐in light source for cancer theranostics, opening a new horizon in biomedical applications. However, considerably low tumor‐targeting efficiency of existing radionuclides and radionuclide‐based nanomedicines limits the efficacy of CR‐induced theranostics (CRIT). It remains a challenge to precisely and efficiently supply CR energy to the tumor site. Here, a “missile‐detonation” strategy is reported, in which a high dose of p‐SCN‐Bn‐deferoxamine‐porphyrin‐PEG nanocomplex (Df‐PPN) is first adminstered as a CR energy receiver/missile to passively target to tumor, and then a low dose of the 89Zr‐labeled Df‐PPN is administrated as a CR energy donor/detonator, which can be visualized and quantified by Cerenkov energy transfer imaging, positron‐emission tomography, and fluorescence imaging. Based on homologous properties, the colocalization of Df‐PPN and 89Zr‐Df‐PPN in the tumor site is maximized and efficient CR energy transfer is enabled, which maximizes the tumor‐targeted CRIT efficacy in an optimal spatiotemporal setting while also reducing adverse off‐target effects from CRIT. This precise and efficient CRIT strategy causes significant tumor vascular damage and inhibited tumor growth.  相似文献   

11.
A novel pH‐ and redox‐ dual‐responsive tumor‐triggered targeting mesoporous silica nanoparticle (TTTMSN) is designed as a drug carrier. The peptide RGDFFFFC is anchored on the surface of mesoporous silica nanoparticles via disulfide bonds, which are redox‐responsive, as a gatekeeper as well as a tumor‐targeting ligand. PEGylated technology is employed to protect the anchored peptide ligands. The peptide and monomethoxypolyethylene glycol (MPEG) with benzoic‐imine bond, which is pH‐sensitive, are then connected via “click” chemistry to obtain TTTMSN. In vitro cell research demonstrates that the targeting property of TTTMSN is switched off in normal tissues with neutral pH condition, and switched on in tumor tissues with acidic pH condition after removing the MPEG segment by hydrolysis of benzoic‐imine bond under acidic conditions. After deshielding of the MPEG segment, the drug‐loaded nanoparticles are easily taken up by tumor cells due to the exposed peptide targeting ligand, and subsequently the redox signal glutathione in tumor cells induces rapid drug release intracellularly after the cleavage of disulfide bond. This novel intelligent TTTMSN drug delivery system has great potential for cancer therapy.  相似文献   

12.
Near‐infrared (NIR)‐light‐triggered photothermal therapy (PTT) usually requires hyperthermia to >50 °C for effective tumor ablation, which can potentially induce inflammatory disease and heating damage of normal organs nearby, while tumor lesions without sufficient heating (e.g., the internal part) may survive after treatment. Achieving effective tumor killing under relatively low temperatures is thus critical toward successful clinical use of PTT. Herein, we design a simple strategy to fabricate poly(ethylene glycol) (PEG)‐modified one‐dimensional nanoscale coordination polymers (1D‐NCPs) with intrinsic biodegradability, large surface area, pH‐responsive behaviors, and versatile theranostic functions. With NCPs consisting of Mn2+/indocyanine green (ICG) as the example, Mn‐ICG@pHis‐PEG display efficient pH‐responsive tumor retention after systemic administration and then load Gambogic acid (GA), a natural inhibitor of heat‐shock protein 90 (Hsp90) that plays an essential role for cells to resist heating‐induced damage. Such Mn‐ICG@pHis‐PEG/GA under a mild NIR‐triggered heating is able to induce effective apoptosis of tumor cells, realizing low‐temperature PTT (~43 °C) with excellent tumor destruction efficacy. This work not only develops a facile approach to fabricate PEGylated 1D‐NCPs with tumor‐specific pH responsiveness and theranostic functionalities, but also presents a unique low‐temperature PTT strategy to kill cancer in a highly effective and minimally invasive manner.  相似文献   

13.
Near‐infrared (NIR) laser‐controlled gene delivery presents some benefits in gene therapy, inducing enhanced gene transfection efficiency. In this study, a “photothermal transfection” agent is obtained by wrapping poly(ethylenimine)‐cholesterol derivatives (PEI‐Chol) around single‐walled carbon nanotubes (SWNTs). The PEI‐Chol modified SWNTs (PCS) are effective in compressing DNA molecules and protecting them from DNaseI degradation. Compared to the complexes formed by PEI with DNA (PEI/DNA), complexes of PCS and DNA that are formed (PCS/DNA) exhibit a little lower toxicity to HEK293 and HeLa cells under the same PEI molecule weight and weight ratios. Notably, caveolae‐mediated cellular uptake of PCS/DNA occurs, which results in a safer intracellular transport of the gene due to the decreased lysosomal degradation in comparison with that of PEI/DNA whose internalization mainly depends on clathrin rather than caveolae. Furthermore, unlike PEI/DNA, PCS/DNA exhibits a photothermal conversion ability, which promotes DNA release from PCS under NIR laser irradiation. The NIR laser‐mediated photothermal transfection of PCS10K/plasmid TP53 (pTP53) results in more apoptosis and necrosis of HeLa cells in vitro than other groups, and achieves a higher tumor‐growth inhibition in vivo than naked pTP53, PEI25K/pTP53, and PCS10K/pTP53 alone. The enhanced transfection efficiency of PCS/DNA can be attributed to more efficient DNA internalization into the tumor cells, promotes detachment of DNA from PCS under the mediation of NIR laser and higher DNA stability in the cells due to caveolae‐mediated cellular uptake of the complexes.  相似文献   

14.
Hypoxia severely impedes photodynamic therapy (PDT) efficiency. Worse still, considerable tumor metastasis will occur after PDT. Herein, an organic superoxide radical (O2??) nano‐photogenerator as a highly effcient type I photosensitizer with robust vascular‐disrupting efficiency to combat these thorny issues is designed. Boron difluoride dipyrromethene (BODIPY)‐vadimezan conjugate (BDPVDA) is synthesized and enwrapped in electron‐rich polymer‐brushes methoxy‐poly(ethylene glycol)‐b‐poly(2‐(diisopropylamino) ethyl methacrylate) (mPEG‐ PPDA) to afford nanosized hydrophilic type I photosensitizer (PBV NPs). Owing to outstanding core–shell intermolecular electron transfer between BDPVDA and mPEG‐PPDA, remarkable O2?? can be produced by PBV NPs under near‐infrared irradiation even in severe hypoxic environment (2% O2), thus to accomplish effective hypoxic‐tumor elimination. Simultaneously, the efficient ester‐bond hydrolysis of BDPVDA in the acidic tumor microenvironment allows vadimezan release from PBV NPs to disrupt vasculature, facilitating the shut‐down of metastatic pathways. As a result, PBV NPs will not only be powerful in resolving the paradox between traditional type II PDT and hypoxia, but also successfully prevent tumor metastasis after type I PDT treatment (no secondary‐tumors found in 70 days and 100% survival rate), enabling enhancement of existing hypoxic‐and‐metastatic tumor treatment.  相似文献   

15.
Intravital fluorescence imaging of vasculature morphology and dynamics in the brain and in tumors with large penetration depth and high signal‐to‐background ratio (SBR) is highly desirable for the study and theranostics of vascular‐related diseases and cancers. Herein, a highly bright fluorophore (BTPETQ) with long‐wavelength absorption and aggregation‐induced near‐infrared (NIR) emission (maximum at ≈700 nm) is designed for intravital two‐photon fluorescence (2PF) imaging of a mouse brain and tumor vasculatures under NIR‐II light (1200 nm) excitation. BTPETQ dots fabricated via nanoprecipitation show uniform size of around 42 nm and a high quantum yield of 19 ± 1% in aqueous media. The 2PF imaging of the mouse brain vasculatures labeled by BTPETQ dots reveals a 3D blood vessel network with an ultradeep depth of 924 µm. In addition, BTPETQ dots show enhanced 2PF in tumor vasculatures due to their unique leaky structures, which facilitates the differentiation of normal blood vessels from tumor vessels with high SBR in deep tumor tissues. Moreover, the extravasation and accumulation of BTPETQ dots in deep tumor (more than 900 µm) is visualized under NIR‐II excitation. This study highlights the importance of developing NIR‐II light excitable efficient NIR fluorophores for in vivo deep tissue and high contrast tumor imaging.  相似文献   

16.
Tumors are 3D, composed of cellular agglomerations and blood vessels. Therapies involving nanoparticles utilize specific accumulations due to the leaky vascular structures. However, systemically injected nanoparticles are mostly uptaken by cells located on the surfaces of cancer tissues, lacking deep penetration into the core cancer regions. Herein, an unprecedented strategy, described as injecting “nanoparticle‐loaded nanoparticles” to address the long‐lasting problem is reported for effective surface‐to‐core drug delivery in entire 3D tumors. The “nanoparticle‐loaded nanoparticle” is a silica nanoparticle (≈150 nm) with well‐developed, interconnected channels (diameter of ≈30 nm), in which small gold nanoparticles (AuNPs) (≈15 nm) with programmable DNA are located. The nanoparticle (AuNPs)‐loaded nanoparticles (silica): (1) can accumulate in tumors through leaky vascular structures by protecting the inner therapeutic AuNPs during blood circulation, and then (2) allow diffusion of the AuNPs for penetration into the entire surface‐to‐core tumor tissues, and finally (3) release a drug triggered by cancer‐characteristic pH gradients. The hierarchical “nanoparticle‐loaded nanoparticle” can be a rational design for cancer therapies because the outer large nanoparticles are effective in blood circulation and in protection of the therapeutic nanoparticles inside, allowing the loaded small nanoparticles to penetrate deeply into 3D tumors with anticancer drugs.  相似文献   

17.
Preferential accumulation of nanoparticles in a tumor is realized commonly by combined effects of active and passive targeting. However, passive targeting based on an enhanced permeation and retention (EPR) effect is not sufficient to observe clear tumor fluorescence images in most of the in vivo experiments using tumor‐bearing mice. Herein, polyglycerol‐functionalized nanodiamonds (ND‐PG) conjugated with cyanine dye (Cy7) are synthesized and it is found that the resulting ND‐PG‐Cy7 is preferentially accumulated in the tumor, giving clear fluorescence in in vivo and ex vivo fluorescence images. One of the plausible reasons is the longer in vivo blood circulation time of ND‐PG‐Cy7 (half‐life: 58 h determined by the pharmacokinetic analysis) than that of other nanoparticles (half‐life: <20 h in most of the previous reports). In a typical example, the fluorescence intensity of tumors increases due to continuous tumor accumulation of ND‐PG‐Cy7, even more than one week postinjection. This may be owing to the stealth effect of PG that was reported previously, avoiding recognition and excretion by reticuloendothelial cells, which are abundant in liver and spleen. In fact, the fluorescence intensities from the liver and spleen is similar to those from other organs, while the tumor exhibits much stronger fluorescence in the ex vivo image.  相似文献   

18.
Insufficient drug release as well as poor drug penetration are major obstacles for effective nanoparticles (NPs)‐based cancer therapy. Herein, the high aqueous instability of amorphous calcium carbonate (ACC) is employed to construct doxorubicin (DOX) preloaded and monostearin (MS) coated “Pandora's box” (MS/ACC–DOX) NPs for lipase‐triggered water‐responsive drug release in lipase‐overexpressed tumor tissue to induce a neighboring effect and enhance drug penetration. MS as a solid lipid can prevent potential drug leakage of ACC–DOX NPs during the circulatory process, while it can be readily be disintegrated in lipase‐overexpressed SKOV3 cells to expose the ACC–DOX core. The high aqueous instability of ACC will lead to burst release of the encapsulated DOX to induce apoptosis and cytotoxicity to kill the tumor cells. The liberated NPs from the dead or dying cells continue to respond to the ubiquitous aqueous environment to sufficiently release DOX once unpacked, like the “Pandora's box”, leading to severe cytotoxicity to neighboring cells (neighboring effect). Moreover, the continuously released free DOX molecules can readily diffused through the tumor extracellular matrix to enhance drug penetration to deep tumor tissue. Both effects contribute to achieve elevated antitumor benefits.  相似文献   

19.
Fenton reaction‐mediated chemodynamic therapy (CDT) can kill cancer cells via the conversion of H2O2 to highly toxic HO?. However, problems such as insufficient H2O2 levels in the tumor tissue and low Fenton reaction efficiency severely limit the performance of CDT. Here, the prodrug tirapazamine (TPZ)‐loaded human serum albumin (HSA)–glucose oxidase (GOx) mixture is prepared and modified with a metal–polyphenol network composed of ferric ions (Fe3+) and tannic acid (TA), to obtain a self‐amplified nanoreactor termed HSA–GOx–TPZ–Fe3+–TA (HGTFT) for sustainable and cascade cancer therapy with exogenous H2O2 production and TA‐accelerated Fe3+/Fe2+ conversion. The HGTFT nanoreactor can efficiently convert oxygen into HO? for CDT, consume glucose for starvation therapy, and provide a hypoxic environment for TPZ radical‐mediated chemotherapy. Besides, it is revealed that the nanoreactor can significantly elevate the intracellular reactive oxygen species content and hypoxia level, decrease the intracellular glutathione content, and release metal ions in the tumors for metal ion interference therapy (also termed “ion‐interference therapy” or “metal ion therapy”). Further, the nanoreactor can also increase the tumor’s hypoxia level and efficiently inhibit tumor growth. It is believed that this tumor microenvironment‐regulable nanoreactor with sustainable and cascade anticancer performance and excellent biosafety represents an advance in nanomedicine.  相似文献   

20.
Small interfering RNA (siRNA) is an attractive therapeutic candidate for sequencespecific gene silencing to treat incurable diseases using small molecule drugs.However,its efficient intracellular delivery has remained a challenge.Here,we have developed a highly biocompatible fluorescent carbon dot (CD),and demonstrate a functional siRNA delivery system that induces efficient gene knockdown in vitro and in vivo.We found that CD nanoparticles (NPs) enhance the cellular uptake of siRNA,via endocytosis in tumor cells,with low cytotoxicity and unexpected immune responses.Real-time study of fluorescence imaging in live cells shows that CD NPs favorably localize in cytoplasm and successfully release siRNA within 12 h.Moreover,we demonstrate that CD NP-mediated siRNA delivery significantly silences green fluorescence protein (GFP) expression and inhibits tumor growth in a breast cancer cell xenograft mouse model of tumor-specific therapy.We have developed a multi functional siRNA delivery vehicle enabling simultaneous bioimaging and efficient downregulation of gene expression,that shows excellent potential for gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号