首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metallic chiral nanoparticles (CNPs) with a nominal helical pitch (P) of sub‐10 nm contain inherent chirality and are promisingly applied to diverse prominent enantiomer‐related applications. However, the sub‐wavelength P physically results in weak optical activity (OA) to prohibit the development of these applications. Herein, a facile method to amplify the CNPs' OA by alloying the host CNPs with metals through a three‐step layer‐by‐layer glancing angle deposition (GLAD) method is devised. Promoted by the GLAD‐induced heating effect, the solute metallic atoms diffuse into the host CNPs to create binary alloy CNPs. Chiral alloying not only induces the plasmonic OA of the diffused solute and the created alloys but also amplifies that of the host CNPs, generally occurring for alloying Ag CNPs with diverse metals (including Cu, Au, Al, and Fe) and alloying Cu CNPs with Ag. Furthermore, the chiral alloying leads to an enhancement of refractive index sensitivity of the CNPs. The alloy CNPs with amplified plasmonic OA pave the way for potentially developing important chirality‐related applications in the fields of heterogeneous asymmetric catalysis, enantiodifferentiation, enantioseparation, biosensing, and bioimaging.  相似文献   

2.
The development of artificial chiral architectures, especially chiral inorganic nanostructures, has greatly promoted research into chirality in nanoscience. The nanoscale chirality of artificial chiral nanostructures offers many new application opportunities, including chiral catalysis, asymmetric synthesis, chiral biosensing, and others that may not be allowed by natural chiral molecules. Herein, the progress achieved during the past decade in chirality-associated biological applications (biosensing, biolabeling, and bioimaging) combined with individual chiral nanostructures (such as chiral semiconductor nanoparticles and chiral metal nanoparticles) or chiral assemblies is discussed.  相似文献   

3.
Chirality is a universal phenomenon in molecular and biological systems, denoting an asymmetric configurational property where an object cannot be superimposed onto its mirror image by any kind of translation or rotation, which is ubiquitous on the scale from neutrinos to spiral galaxies. Chirality plays a very important role in the life system. Many biological molecules in the life body show chirality, such as the “codebook” of the earth's biological diversity-DNA, nucleic acid, etc. Intriguingly, living organisms hierarchically consist of homochiral building blocks, for example, l -amino acids and d -sugars with unknown reason. When molecules with chirality interact with these chiral factors, only one conformation favors the positive development of life, that is, the chiral host environment can only selectively interact with chiral molecules of one of the conformations. The differences in chiral interactions are often manifested by chiral recognition, mutual matching, and interactions with chiral molecules, which means that the stereoselectivity of chiral molecules can produce changes in pharmacodynamics and pathology. Here, the latest investigations are summarized including the construction and applications of chiral materials based on natural small molecules as chiral source, natural biomacromolecules as chiral sources, and the material synthesized by design as a chiral source.  相似文献   

4.
Chirality is a basic property of nature and has great importance in photonics, biochemistry, medicine, and catalysis. This importance has led to the emergence of the chiral inorganic nanostructure field in the last two decades, providing opportunities to control the chirality of light and biochemical reactions. While the facile production of 3D nanostructures has remained a major challenge, recent advances in nanocrystal synthesis have provided a new pathway for efficient control of chirality at the nanoscale by transferring molecular chirality to the geometry of nanocrystals. Interestingly, this discovery stems from a purely crystallographic outcome: chirality can be generated on high-Miller-index surfaces, even for highly symmetric metal crystals. This is the starting point herein, with an overview of the scientific history and a summary of the crystallographic definition. With the advance of nanomaterial synthesis technology, high-Miller-index planes can be selectively exposed on metallic nanoparticles. The enantioselective interaction of chiral molecules and high-Miller-index facets can break the mirror symmetry of the metal nanocrystals. Herein, the fundamental principle of chirality evolution is emphasized and it is shown how chiral surfaces can be directly correlated with chiral morphologies, thus serving as a guide for researchers in chiral catalysts, chiral plasmonics, chiral metamaterials, and photonic devices.  相似文献   

5.
The supramolecular pinwheel cluster is a unique chiral structure with evident handedness. Previous studies reveal that the chiral pinwheels are composed of chiral or achiral molecules with polar groups, which result in strong intermolecular interactions such as hydrogen-bonding or dipole interactions. Herein, it is shown that the simple linear aromatic molecule, pentacene, can be self-assembled into large chiral pinwheel clusters on the semimetal Bi(111) surface, due to enhanced intermolecular interactions. The pentacene pinwheels reveal two levels of organizational chirality: the chiral hexamers resulting from asymmetric shifting along the long molecular axis, and chiral arrangement of six hexamers with a rotor motif. Furthermore, a new relation between the local point chirality and organizational chirality is identified from the pinwheels: the former is not essential for the latter in 2D pinwheel clusters of the pentacene molecule.  相似文献   

6.
The manifestation of chirality at surfaces has attracted much attention in recent years. In this review, some of main features of chiral endowments by complex organic molecules at defined metal surfaces are reviewed. Detailed surface spectroscopic data have enabled a hierarchy of chiral expressions to be delineated, from point group chirality expressed by local chiral motifs, to space group chirality in which these motifs act as building blocks which self-assemble into organised chiral structures, to deeper propagation of chirality into the metal leading to chiral reconstructions. Chiral endowments by both chiral and achiral molecules is discussed alongside the implications for progressing chirality from the local to the global level.  相似文献   

7.
The effective synthesis of chiral compounds in a highly enantioselective manner is obviously attractive. Inspired by the enzymatic reactions that occur in pocket‐like cavities with high efficiency and specificity, chemists are seeking to construct catalysts that mimic this key feature of enzymes. Recent progress in supramolecular coordination chemistry has shown that metal–organic cages (MOCs) and metal–organic frameworks (MOFs) with chiral confined cavities/pores may offer a novel platform for achieving asymmetric catalysis with high enantioselectivity. The inherent chiral confined microenvironment is considered to be analogous to the binding pocket of enzymes, and this pocket promotes enantioselective transformations. This work focuses on the recent advances in MOCs and MOFs with chiral confined spaces for asymmetric catalysis, and each section is separated into two parts based on how the chirality is achieved in these metal–organic architectures. A special emphasis is placed on discussing the relationship between the enantioselectivity and the confined spaces of the chiral functional MOCs and MOFs rather than catalytic chemistry. Finally, current challenges and perspectives are discussed. This work is anticipated to offer researchers insights into the design of sophisticated chiral confined space‐based metal–organic architectures for asymmetric catalysis with high enantioselectivity.  相似文献   

8.
Chiral materials are widely applied in various fields such as enantiomeric separation, asymmetric catalysis, and chiroptical effects, providing stereospecific conditions and environments. Supramolecular concepts to create the chiral materials can provide an insight for emerging chiro-optical properties due to their well-defined scaffolds and the precise functionalization of the surfaces or skeletons. Among the various supramolecular chiral structures, 2D chiral sheet structures are particularly interesting materials because of their extremely high surface area coupled with many unique chemical and physical properties, thereby offering potential for the next generation of functional materials for optically active systems and optoelectronic devices. Nevertheless, relatively limited examples for 2D chiral materials exhibiting specific functionality have been reported because incorporation of molecular chirality into 2D architectures is difficult at the present stage. Here, a brief overview of the recent advances is provided on the construction of chiral supramolecular 2D materials and their functions. The design principles toward 2D chirality and their potential applications are also discussed.  相似文献   

9.
The chiral aspect of inorganic crystals that crystallize in chiral space groups has been largely ignored until recently, partly due to difficulties in characterizing the chiroptical properties of bulk crystals, and also due to the difficulty in separating (sub)micrometer-scale chiral crystal enantiomers. In recent years, the colloidal synthesis of intrinsically chiral nanocrystals (NCs) of several chiral inorganic compounds with significant enantiomeric excess has been demonstrated. This is achieved through the use of chiral molecular ligands, which bind to the atomic/ionic components of the crystals, preferentially forming one crystal enantiomorph. Here, recent progress on several aspects of these NCs is described, including the connection between ligand structure and its ability to direct NC handedness, chiral amplification in the synthesis leading to enantiopure NC samples, spontaneous symmetry breaking, the formation of NCs with chiral shapes, the connection between lattice and shape chirality and mixed contributions of atomic-scale and shape chirality to the chiroptical properties.  相似文献   

10.
Transition metal oxides (TMOs) consist of a series of solid materials, exhibiting a wide variety of structures with tunability and versatile physicochemical properties. Such a statement is undeniably true for chiral TMOs since the introduction of chirality brings in not only active optical activities but also geometrical anisotropy due to the symmetry-breaking effect. Although progressive investigations have been made for accurately controlled synthesis and relevant explanations on the chirality origin of such materials, the overall field of chiral TMOs is still in its infancy with adequate space for interdisciplinary communications and development. Herein, therefore, recent advances in both experimental phenomena and theoretical calculations in this area are reviewed, to elucidate the underlying chiral origin with respect to their fabrications process, triggering new insights for further evolution of this field.  相似文献   

11.
Site-selective chiral growth of anisotropic nanoparticles is of great importance to realize the plasmonic nanostructures with delicate geometry and desired optical chirality; however, it remains largely unexplored. This work demonstrates a controlled site-selective chiral growth system based on the seed-mediated growth of anisotropic Au triangular nanoplates. The site-selective chiral growth involves two distinct underlying pathways, faceted growth and island growth, which are interswitchable upon maneuvering the interplay of chiral molecules, surfactants, and reducing agents. The pathway switch governs the geometric and chirality evolution of Au triangular nanoplates, giving rise to tailorable circular dichroism spectra. The ability to tune the optical chirality in a controlled manner by manipulating the site-selective chiral growth pathway opens up a promising strategy for exploiting chiral metamaterials with increasing architectural complexity in chiroptical applications.  相似文献   

12.
A novel mass spectrometric method is introduced for rapid and accurate chiral quantification by examining a tetracoordinated transition metal complex into which a reference and a fixed ligand are incorporated simultaneously with the analyte. Chiral analysis is performed by measuring the dissociation kinetics of these trimeric cluster ions [(M(II) + L(fixed) - H)(ref)(An)]+ (M(II) = a transition metal ion, L(fixed) = chiral peptide fixed ligand, ref = chiral reference ligand, and An = chiral analyte) in an ion trap mass spectrometer. The ratio of the product ion branching ratios measured when a pair of pure chiral fixed ligands and chiral reference ligands (/ref(D) and /ref(L); or /ref(L) and /ref(D)) are employed in separate experiments is related, via the kinetic method formalism, to the enantiomeric composition of the chiral mixture. This fixed-ligand quotient ratio (QR(fixed)) is logarithmically proportional to enantiomeric purity allowing construction of a calibration curve for chiral analysis when the analyte is only available in one form of known optical purity. There are reciprocal relationships when switching the chirality of the fixed/reference ligands. Improved quantification accuracy (due to simplified dissociation kinetics) and ready construction of two or more single-point calibration curves allow data to be cross-checked and represent an advantage of this approach. These features and the matrix tolerance of the kinetic method are demonstrated using the QR(fixed) method for determinations of enantiomeric excess of the drug DOPA in the presence of the co-drug compound L-carbidopa. The chiral selectivity of DOPA was found to vary from 0.0581 to 0.337 using this method, depending on the choices of fixed-ligand and reference chirality. The average relative errors are less than 1.2%. The potential of chiral morphing (changing chiral centers in the ligands) to further refine the chiral interactions and hence to maximize chiral recognition is shown.  相似文献   

13.
How to convert the weak chiral‐interaction into the macroscopic properties of materials remains a huge challenge. Here, this study develops highly fluorescent, selectively chiral‐responsive liquid quantum dots (liquid QDs) based on the hydrophobic interaction between the chiral chains and the oleic acid‐stabilized QDs, which have been designated as (S)‐1810‐QDs. The fluorescence spectrum and liquidity of thermal control demonstrate the fluorescence properties and the fluidic behavior of (S)‐1810‐QDs in the solvent‐free state. Especially, (S)‐1810‐QDs exhibit a highly chiral‐selective response toward (1R, 2S)‐2‐amino‐1,2‐diphenyl ethanol. It is anticipated that this study will facilitate the construction of smart chiral fluidic sensors. More importantly, (S)‐1810‐QDs can become an attractive material for chiral separation.  相似文献   

14.
In recent years, optical chirality of plasmonic nanostructures has aroused great interest because of innovative fundamental understanding as well as promising potential applications in optics, catalysis and sensing. Herein, state‐of‐the‐art studies on circular dichroism (CD) characteristics of plasmonic nanostructures are summarized. The hybrid of achiral plasmonic nanoparticles (NPs) and chiral molecules is explored to generate a new CD response at the plasmon resonance as well as the enhanced CD intensity of chiral molecules in the UV region, owing to the Coulomb static and dynamic dipole interactions between plasmonic NPs and chiral molecules. As for chiral assembly of plasmonic NPs, plasmon–plasmon interactions between the building blocks are found to induce generation of intense CD response at the plasmon resonance. Three‐dimensional periodical arrangement of plasmonic NPs into macroscale chiral metamaterials is further introduced from the perspective of negative refraction and photonic bandgap. A strong CD signal is also discerned in achiral planar plasmonic nanostructures under illumination of circular polarized plane wave at oblique incidence or input vortex beam at normal incidence. Finally perspectives, especially on future investigation of time‐resolved CD responses, are presented.  相似文献   

15.
Inversion symmetry breaking has become a vital research area in modern magnetism with phenomena including the Rashba effect, spin Hall effect, and the Dzyaloshinskii–Moriya interaction (DMI)—a vector spin exchange. The latter one may stabilize chiral spin textures with topologically nontrivial properties, such as Skyrmions. So far, chiral spin textures have mainly been studied in helimagnets and thin ferromagnets with heavy‐element capping. Here, the concept of chirality driven by interfacial DMI is generalized to complex multicomponent systems and demonstrated on the example of chiral ferrimagnetism in amorphous GdCo films. Utilizing Lorentz microscopy and X‐ray magnetic circular dichroism spectroscopy, and tailoring thickness, capping, and rare‐earth composition, reveal that 2 nm thick GdCo films preserve ferrimagnetism and stabilize chiral domain walls. The type of chiral domain walls depends on the rare‐earth composition/saturation magnetization, enabling a possible temperature control of the intrinsic properties of ferrimagnetic domain walls.  相似文献   

16.
Functional soft materials exhibiting distinct functionalities in response to a specific stimulus are highly desirable towards the fabrication of advanced devices with superior dynamic performances. Herein, two novel light‐driven chiral fluorescent molecular switches have been designed and synthesized that are able to exhibit unprecedented reversible Z/E photoisomerization behavior along with tunable fluorescence intensity in both isotropic and anisotropic media. Cholesteric liquid crystals fabricated using these new fluorescent molecular switches as chiral dopants exhibit reversible reflection color tuning spanning the visible and infrared region of the spectrum. Transparent display devices have been fabricated using both low chirality and high chirality cholesteric films that operate either exclusively in fluorescent mode or in both fluorescent and reflection mode, respectively. The dual mode display device employing short pitch cholesteric film is able to function on demand under all ambient light conditions including daylight and darkness with fast response and high resolution. Moreover, the proof‐of‐concept for a “remote‐writing board” using cholesteric films containing one of the light‐driven chiral fluorescent molecular switches with ease of fabrication and operation is disclosed herein. Such optically rewritable transparent display devices enabled by light‐driven chiral fluorescent molecular switches pave a new way for developing novel display technology under different lighting conditions.  相似文献   

17.
Chiral transition metal oxide nanoparticles (CTMOs) are attracting a lot of attention due to their fascinating properties. Nevertheless, elucidating the chirality induction mechanism often remains a major challenge. Herein, the synthesis of chiral cobalt oxide nanoparticles mediated by histidine (Co3O4@L-His and Co3O4@D-His for nanoparticles synthesized in the presence of L- and D-histidine, respectively) is investigated. Interestingly, these CTMOs exhibit remarkable and tunable chiroptical properties. Their analysis by x-ray photoelectron, Fourier transform infrared, and ultraviolet-visible absorption spectroscopy indicates that the ratio of Co2+/Co3+ and their interactions with the imidazole groups of histidine are behind their chiral properties. In addition, the use of chiral Co3O4 nanoparticles for the development of sensitive, rapid, and enantioselective circular dichroism-based sensors is demonstrated, allowing direct molecular detection and discrimination between cysteine or penicillamine enantiomers. The circular dichroism response of the chiral Co3O4 exhibits a limit of detection and discrimination of cysteine and penicillamine enantiomers as low as 10 µm . Theoretical calculations suggest that the ligand exchange and the coexistence of both species adsorbed on the oxide surface are responsible for the enantiomeric discrimination. This research will enrich the synthetic approaches to obtain CTMOs and enable the extension of the applications and the discovery of new chiroptical properties.  相似文献   

18.
Enantioselective synthesis of chiral Au38 nanoclusters is achieved with chiral 2‐phenylpropane‐1‐thiol (abbreviated as R/S‐PET, organic soluble), captopril and glutathione (water soluble) as the respective ligand. The circular dichroism (CD) spectra of Au38(R‐PET)24 and Au38(S‐PET)24 show multiple bands which are precisely mirror‐imaged, while their normal optical absorption spectra are identical with each other and also superimposable with that of the racemic Au38(SCH2CH2Ph)24 nanoclusters. The observed CD signals are not from the chiral ligands themselves (which only give rise to CD signals in the UV (<250 nm), rather than in the visible wavelength region). Chiral Au38 nanoclusters with different types of ligands are further compared. Although the Au38 core is intrinsically chiral, different chiral ligands are found to largely influence the chiroptical response of the overall nanocluster. Thus, the chiral response of ligand‐protected nanoclusters has both contributions from the metal core and the ligand shell around it. These optically active nanoclusters hold promise in future applications such as chiral sensing and catalysis.  相似文献   

19.
Hybrid organic–inorganic perovskites (HOIPs), in particular 3D HOIPs, have demonstrated remarkable properties, including ultralong charge‐carrier diffusion lengths, high dielectric constants, low trap densities, tunable absorption and emission wavelengths, strong spin–orbit coupling, and large Rashba splitting. These superior properties have generated intensive research interest in HOIPs for high‐performance optoelectronics and spintronics. Here, 3D hybrid organic–inorganic perovskites that implant chirality through introducing the chiral methylammonium cation are demonstrated. Based on structural optimization, phonon spectra, formation energy, and ab initio molecular dynamics simulations, it is found that the chirality of the chiral cations can be successfully transferred to the framework of 3D HOIPs, and the resulting 3D chiral HOIPs are both kinetically and thermodynamically stable. Combining chirality with the impressive optical, electrical, and spintronic properties of 3D perovskites, 3D chiral perovskites is of great interest in the fields of piezoelectricity, pyroelectricity, ferroelectricity, topological quantum engineering, circularly polarized optoelectronics, and spintronics.  相似文献   

20.
Circularly polarized luminescent (CPL) materials are currently attracting great interest. While a chiral building is usually necessary in order to obtain CPL materials, here, this study proposes a general approach for fabricating 1D circularly polarized luminescent nanoassemblies from achiral aromatic molecules or aggregation‐induced emissive compounds (AIEgens). It is found that a C3 symmetric chiral gelator can individually form hexagonal nanotube structures and encapsulate the guest molecules. When achiral AIEgens are encapsulated into the confined nanotubes via organogelation, the AIEgens will emit circularly polarized luminescence. Further, the direction of the CPL could be controlled by the supramolecular chirality of the nanotube. Remarkably, the approach is universal and various kinds of the AIEgens can be doped to show such property, providing a full‐color‐tunable circularly polarized luminescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号