首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wind turbine performance and condition monitoring play vital roles in detecting and diagnosing suboptimal performance and guiding operations and maintenance. Here, a new seismic‐based approach to monitoring the health of individual wind turbine components is presented. Transfer functions are developed linking key condition monitoring properties (drivetrain and tower acceleration) to unique, robust, and repeatable seismic signatures. Predictive models for extreme (greater than 99th percentile) drivetrain and tower acceleration based on independent seismic data exhibit higher skill than reference models based on hub‐height wind speed. The seismic models detect extreme drivetrain and tower acceleration with proportions correct of 96% and 93%, hit rates of 91% and 82%, and low false alarm rates of 4% and 6%, respectively. Although new wind turbines incorporate many diagnostic sensors, seismic‐based condition/performance monitoring may be particularly useful in extending the productive lifetime of previous generation wind turbines.  相似文献   

2.
Michael J. Werle 《风能》2020,23(8):1711-1725
This paper provides a simple yet accurate lower order model for predicting the performance of shrouded wind turbines for a range of shroud airfoil shapes varying in length, camber, and thickness. The model employs classic thin airfoil aerodynamic principals and is an enhancement of a previous related model developed for shrouded propellers. The new method's accuracy is assessed using inviscid and viscous computational studies employing an actuator‐disc representation for the turbine rotor. Detailed comparisons are made for three shrouds over a full range of rotor loadings. For the range of configurations assessed, it was found that the algebraic solutions from the new method provided very good engineering approximations at all operating conditions considered, thereby enabling rapid preliminary design of shrouded power systems. Additionally, the new model is used to establish a Betz‐like power performance limit for airfoil‐based shrouded turbines.  相似文献   

3.
4.
Joshua Lyle Dowler  Sven Schmitz 《风能》2015,18(10):1793-1813
This work proposes a new solution‐based stall delay model to predict rotational effects on horizontal‐axis wind turbines. In contrast to conventional stall delay models that correct sectional airfoil data prior to the solution to account for three‐dimensional and rotational effects, a novel approach is proposed that corrects sectional airfoil data during a blade element momentum solution algorithm by investigating solution‐dependent parameters such as the spanwise circulation distribution and the local flow velocity acting at a section of blade. An iterative process is employed that successively modifies sectional lift and drag data until the blade circulation distribution is converged. Results obtained with the solution‐based stall delay model show consistent good agreement with measured data along the National Renewable Energy Laboratory Phase VI and Model Experiments in Controlled Conditions rotor blades at low and high wind speeds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Micro‐generation is being widely promoted as a way for householders in the UK and elsewhere to take part in ‘the Green Revolution’. Building‐integrated wind turbines (BIWTs) provide a way to do this, enabling people to reduce their contribution to the problems of both climate change and decreasing fossil fuel availability. Although energy yields from BIWTs for many householders have been shown to be low, there are still situations where such turbines can make a useful contribution to electricity generation, e.g. in windier areas and for isolated detached buildings. The standards for the installation of BIWTs are still being developed including those for the safe mounting of turbines on domestic buildings. This paper investigates the current trend for mounting small wind turbines on the walls of domestic premises and compares this with an approach which uses roof timbers. It identifies the main characteristics of building construction which affect the integrity of such installations. European and British standards have been used to calculate wind and gravitational loads. Finite element models are used to derive working stresses and, hence, some basic principles of good design. The likely costs of wall and roof mounting are then compared. Installation and health and safety issues are also examined briefly. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Most numerical and experimental studies of the performance of vertical‐axis wind turbines have been conducted with the rotors in steady, and thus somewhat artificial, wind conditions—with the result that turbine aerodynamics, under varying wind conditions, are still poorly understood. The vorticity transport model has been used to investigate the aerodynamic performance and wake dynamics, both in steady and unsteady wind conditions, of three different vertical‐axis wind turbines: one with a straight‐bladed configuration, another with a curved‐bladed configuration and another with a helically twisted configuration. The turbines with non‐twisted blades are shown to be somewhat less efficient than the turbine with helically twisted blades when the rotors are operated at constant rotational speed in unsteady wind conditions. In steady wind conditions, the power coefficients that are produced by both the straight‐bladed and curved‐bladed turbines vary considerably within one rotor revolution because of the continuously varying angle of attack on the blades and, thus, the inherent unsteadiness in the blade aerodynamic loading. These variations are much larger, and thus far more significant, than those that are induced by the unsteadiness in the wind conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The increasing number of wind turbine power plant installations and the recent trend to locate them in proximity of build-up areas raise safety concerns as the rotor failure may result in blade throws that can endanger people living/working close to the wind farm. Therefore, it becomes strictly necessary to define setback distances and/or buffer zones to minimize the risk of damage or injury from components failure. However, according to the existing standards, buffer zones and/or setbacks distances are defined by ‘rule of thumbs’, usually based on the height of the wind tower, and are often overestimated, resulting in too large distances, which may result incompatible with the needs of increasing the number wind power installations. This explains why the scientific community is, now more than in the past, spending a lot of effort in the attempt of developing reliable methodologies able to assess the impact risk in the areas surrounding the wind farm.In the present paper a very novel and computationally efficient method is presented to estimate the blade throw hazard of wind turbines. The method combines a 3D dynamic model of the detached blade fragment with a rigorous probabilistic approach. Results are shown in terms of safe (white) and unsafe (dark) zones, which are estimated on the basis of an acceptable risk threshold.  相似文献   

8.
Andrew Ning  Derek Petch 《风能》2016,19(12):2137-2152
Wind turbines are complex systems where component‐level changes can have significant system‐level effects. Effective wind turbine optimization generally requires an integrated analysis approach with a large number of design variables. Optimizing across large variable sets is orders of magnitude more efficient with gradient‐based methods as compared with gradient‐free method, particularly when using exact gradients. We have developed a wind turbine analysis set of over 100 components where 90% of the models provide numerically exact gradients through symbolic differentiation, automatic differentiation, and adjoint methods. This framework is applied to a specific design study focused on downwind land‐based wind turbines. Downwind machines are of potential interest for large wind turbines where the blades are often constrained by the stiffness required to prevent a tower strike. The mass of these rotor blades may be reduced by utilizing a downwind configuration where the constraints on tower strike are less restrictive. The large turbines of this study range in power rating from 5–7MW and in diameter from 105m to 175m. The changes in blade mass and power production have important effects on the rest of the system, and thus the nacelle and tower systems are also optimized. For high‐speed wind sites, downwind configurations do not appear advantageous. The decrease in blade mass (10%) is offset by increases in tower mass caused by the bending moment from the rotor‐nacelle‐assembly. For low‐wind speed sites, the decrease in blade mass is more significant (25–30%) and shows potential for modest decreases in overall cost of energy (around 1–2%). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The stability of the electrical grid depends on enough generators being able to provide appropriate responses to sudden losses in generation capacity, increases in power demand or similar events. Within the United States, wind turbines largely do not provide such generation support, which has been acceptable because the penetration of wind energy into the grid has been relatively low. However, frequency support capabilities may need to be built into future generations of wind turbines to enable high penetration levels over approximately 20%. In this paper, we describe control strategies that can enable power reserve by leaving some wind energy uncaptured. Our focus is on the control strategies used by an operating turbine, where the turbine is asked to track a power reference signal supplied by the wind farm operator. We compare the strategies in terms of their control performance as well as their effects on the turbine itself, such as the possibility for increased loads on turbine components. It is assumed that the wind farm operator has access to the necessary grid information to generate the power reference provided to the turbine, and we do not simulate the electrical interaction between the turbine and the utility grid. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Multimegawatt horizontal axis wind turbines often operate in yawed wind transients, in which the resulting periodic loads acting on blades, drive‐train, tower, and foundation adversely impact on fatigue life. Accurately predicting yawed wind turbine aerodynamics and resulting structural loads can be challenging and would require the use of computationally expensive high‐fidelity unsteady Navier‐Stokes computational fluid dynamics. The high computational cost of this approach can be significantly reduced by using a frequency‐domain framework. The paper summarizes the main features of the COSA harmonic balance Navier‐Stokes solver for the analysis of open rotor periodic flows, presents initial validation results on the basis of the analysis of the NREL Phase VI experiment, and it also provides a sample application to the analysis of a multimegawatt turbine in yawed wind. The reported analyses indicate that the harmonic balance solver determines the considered periodic flows from 30 to 50 times faster than the conventional time‐domain approach with negligible accuracy penalty to the latter.  相似文献   

11.
Structural loads of wind turbines are becoming critical because of the growing size of wind turbines in combination with the required dynamic output demands. Wind turbine tower and blades are therefore affected by structural loads. To mitigate the loads while maintaining other desired conditions such as the optimization of power generated or the regulation of rotor speed, advanced control schemes have been developed during the last decade. However, conflict and trade‐off between structural load reduction capacity of the controllers and other goals arise; when trying to reduce the structural loads, the power production or regulation performance may be also reduced. Suitable measures are needed when designing controllers to evaluate the control performance with respect to the conflicting control goals. Existing measures for structural loads only consider the loads without referring to the relationship between loads and other control performance aspects. In this contribution, the conflicts are clearly defined and expressed to evaluate the effectiveness of control methods by introducing novel measures. New measures considering structural loads, power production, and regulation to prove the control performance and to formulate criteria for controller design are proposed. The proposed measures allow graphical illustration and numerical criteria describing conflicting control goals and the relationship between goals. Two control approaches for wind turbines, PI and observer‐based state feedback, are defined and used to illustrate and to compare the newly introduced measures. The results are obtained by simulation using Fatigue, Aerodynamics, Structures, and Turbulence (FAST) tool, developed by the National Renewable Energy Laboratory (NREL), USA.  相似文献   

12.
In the present study, particle swarm optimisation has been used to resolve the placement of wind turbines in a wind park giving maximum power and efficiency with minimum number of turbines. Unlike past approaches where each plot was subdivided into smaller square grids at the centre of which a turbine can be placed, the present study does not require division of the plot. Thus, a turbine now has more flexibility to be placed anywhere outside a radius of 200 m of each other yielding better results. The case of unidirectional uniform wind is considered in this study. Along with the optimal layout, fitness value, total power output, efficiency and number of turbines have also been reported. Comparison with results of earlier study and possible explanation is also provided.  相似文献   

13.
14.
The optimal siting of wind turbines in the vicinity of cliffs is investigated with respect to inflow yaw angle, using wind tunnel experiments. Wind statistics are measured above a generic forward facing step, namely, the speed‐up, turbulence intensity, changes in wind direction and the persistence and frequency of vortices shed from the crest of the cliff. The experiments demonstrate that at half a cliff height above the cliff, and that same distance downstream of the crest, there exists an optimal region with increases in wind speed, combined with lower levels of turbulence intensity across the range of inflow angles that were investigated. In contrast, the far wake experiences a velocity deficit and an increase in turbulence intensity, when compared with the inflow. Furthermore, vortices are shed from the downstream reattachment region and persist beyond 10 cliff heights downstream. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
N. Hara  S. Tsujimoto  Y. Nihei  K. Iijima  K. Konishi 《风能》2017,20(7):1187-1206
This paper discusses the model‐based design of a blade pitch controller for a floating offshore wind turbine (FOWT) scale model. A mathematical model of the FOWT is constructed from an input–output measurement in an experiment using system identification. The blade pitch controller is designed by an control method, and the effectiveness of the controller is evaluated by means of a basin experiment using the FOWT scale model. The results show that the blade pitch controller is effective in reducing platform pitch motion and rotor speed fluctuation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Wind turbines are typically operated to maximize their performance without considering the impact of wake effects on nearby turbines. Wind plant control concepts aim to increase overall wind plant performance by coordinating the operation of the turbines. This paper focuses on axial‐induction‐based wind plant control techniques, in which the generator torque or blade pitch degrees of freedom of the wind turbines are adjusted. The paper addresses discrepancies between a high‐order wind plant model and an engineering wind plant model. Changes in the engineering model are proposed to better capture the effects of axial‐induction‐based control shown in the high‐order model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
An expression for the aerodynamic optimization of aerofoils for 2D lift driven vertical‐axis wind turbines is derived as a function of lift slope and drag. As lift slope is proportional to aerofoil thickness, the aerodynamic optimum is found in thick aerofoils, which are also structurally advantageous. Using a genetic optimization algorithm, the objective function is used to generate aerofoils whose performance in a vertical‐axis wind turbine is calculated using a potential flow solution of the induction field and 2D polars calculated with XFOIL. The results demonstrate power and structural gains. This approach can lead to reductions in rotor mass due to the thicker and thus stiffer aerofoils, without compromising aerodynamic performance. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The objective of this paper is to propose a simple approach to solve the steady state of a wind turbine (WT) equipped with a doubly fed induction generator (DFIG), which can be used to initialize dynamic studies of the machine. The idea is to model the rotor‐side converter (RSC) as a constant current source connected to the rotor of the DFIG. The resulting equivalent circuit consists of a voltage source in series with a reactance, which makes it possible to obtain simple phasor expressions that can be used to obtain the Park components of the variables. The proposed method is compared with the traditional Newton–Raphson algorithm, showing that it is easier and faster to implement, as it makes use of the phasor expressions and it does not require an iterative process to obtain the final solution. Finally, the results of the proposed method are used to simulate a 2‐MW DFIG‐based WT under three‐phase faults, considering three different WT‐operating points. In these simulations, the idea of constant rotor current is extrapolated to the entire event. The simulated results show that both current at torque peaks are reduced. The analytical study and the simulations have been carried out in Matlab ?.  相似文献   

19.
Sheared velocity profiles pervade all wind‐turbine applications, thus making it important to understand their effect on the wake. In this study, a single wind turbine is modeled using the actuator‐line method in the incompressible Navier–Stokes equations. The tip vortices are perturbed harmonically, and the growth rate of the response is evaluated under uniform inflow and a linear velocity profile. Whereas previous investigations of this kind were conducted in the rotating frame of reference, this study evaluates the excitation response in the fixed frame of reference, thus necessitating a frequency transformation. It is shown that increasing the shear decreases the spatial growth rate in the upper half of the wake while increasing it in the lower half. When scaled with the local tip vortex parameters, the growth rate along the entire azimuth collapses to a single value for the investigated wavenumbers. We conclude that even though the tip‐vortex breakdown is asymmetric in sheared flow, the scaled growth rates follow the behavior of axisymmetric helical vortices. An excitation amplitude reduction by an order of magnitude extends the linear growth region of the wake by one radius for uniform inflow. In the sheared setup, the linear growth region is extended further in the top half than in the bottom half because of the progressive distortion of the helical tip vortices. An existing model to determine the stable wake length was shown to be in close agreement with the observed numerical results when adjusted for shear.  相似文献   

20.
Downwind force angles are small for current turbines systems (1–5 MW) such that they may be readily accommodated by conventional upwind configurations. However, analysis indicates that extreme‐scale systems (10–20 MW) will have larger angles that may benefit from downwind‐aligned configurations. To examine potential rotor mass reduction, the pre‐alignment concept was investigated a two‐bladed configuration by keeping the structural and aerodynamic characteristics of each blade fixed (to avoids a complete blade re‐design). Simulations for a 13.2 MW rated rotor at steady‐state conditions show that this concept‐level two‐bladed design may yield 25% rotor mass savings while also reducing average blade stress over all wind speeds. These results employed a pre‐alignment on the basis of a wind speed of 1.25 times the rated wind speed. The downwind pre‐aligned concept may also reduce damage equivalent loads on the blades by 60% for steady rated wind conditions. Even higher mass and damage equivalent load savings (relative to conventional upwind designs) may be possible for larger systems (15–20 MW) for which load‐alignment angles become even larger. However, much more work is needed to determine whether this concept can be translated into a practical design that must meet a wide myriad of other criteria. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号