首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new robust adaptive algorithm for control of robot manipulators is proposed to account for a desired transient response with global exponential convergence of tracking errors without any persistent excitating assumption on the regressor. Its novelty lies in a new dynamic sliding surface that allows a systematic combination of adaptive control and variable structure control to yield a sliding mode inside an adaptive control loop. During sliding mode, parameter uncertainty appears in terms of known variables in such a manner that a new robust parameter estimator with enhanced stability properties is established. On the other hand, if the regressor meets the persistent exciting condition, the global uniform exponential stability of the equilibrium concerning the adaptive closed-loop error equation is easily established. The proposed controller from the VSS viewpoint relaxes the longstanding condition on a priori knowledge of the size of the parametric uncertainty to induce a sliding mode. On the other hand, from the adaptive control viewpoint it relaxes the standard assumption of the persistent excitation on the regressor to obtain the exponential convergence of tracking errors. Also, the stability against time-varying parameters is briefly discussed. Concluding remarks concerning its structural behaviour are given, and computer simulation data show a robust performance.  相似文献   

2.
A fully adaptive decentralized control of robot manipulators   总被引:2,自引:0,他引:2  
In this paper, we develop a fully adaptive decentralized controller of robot manipulators for trajectory tracking. With high-order and adaptive variable-structure compensations, the proposed scheme makes both position and velocity tracking errors of robot manipulators globally converge to zero asymptotically while allowing all signals in closed-loop systems to be bounded, even without any prior knowledge of robot manipulators. Thus this control scheme is claimed to be fully adaptive. Even when the proposed scheme is modified to avoid the possible chattering in actual implementations, the overall performance will remain appealing. Finally, numerical results are provided to verify the effectiveness of the proposed schemes at the end.  相似文献   

3.
Chian-Song  Kuang-Yow  Tsu-Cheng 《Automatica》2004,40(12):2111-2119
In the presence of uncertain constraint and robot model, an adaptive controller with robust motion/force tracking performance for constrained robot manipulators is proposed. First, robust motion and force tracking is considered, where a performance criterion containing disturbance and estimated parameter attenuations is presented. Then the proposed controller utilizes an adaptive scheme and an auxiliary control law to deal with the uncertain environmental constraint, disturbances, and robotic modeling uncertainties. After solving a simple linear matrix inequality for gain conditions, the effect from disturbance and estimated parameter errors to motion/force errors is attenuated to an arbitrary prescribed level. Moreover, if the disturbance and estimated parameter errors are square-integrable, then an asymptotic motion tracking is achieved while the force error is as small as the inversion of control gain. Finally, numerical simulation results for a constrained planar robot illustrate the expected performance.  相似文献   

4.
By using a state observer, a new robust trajectory tracking control scheme is developed in this paper for electrically driven robot manipulators. The role of the observer is to estimate joint angular velocities. The proposed controller does not employ adaptation, but assures robust stability of tracking error between joint angles and desired trajectories. At sacrificing asymptotical stability of the tracking errors, the configuration of the proposed controller becomes very simple, compared with regressor-based adaptive controllers. It is shown in the closed-loop system using the proposed controller that the Euclidian norm of tracking errors arrives at any small closed region with any convergent rate by setting only one design parameter. Especially for the desired trajectories converging to constant ultimate values, it is assured that tracking errors converge to zero.  相似文献   

5.
New adaptation algorithm is presented for adaptive control of robot manipulators. The passivity property of the proposed algorithm is first established, then the stability is proved based on the passivity properties of the plant and those of the proposed algorithm. Because of the use of the past information and averaging effect, this algorithm gives a smoother tracking and parameter error and a parameter convergence under a weaker excitation condition  相似文献   

6.
赵林  徐志国 《控制与决策》2023,38(9):2701-2706
研究具有未知参数和外部干扰机械臂的自适应渐近跟踪控制问题,提出一种自适应命令滤波反步策略,利用命令滤波器避免传统反步中对虚拟控制函数的微分计算,并建立误差补偿机制补偿滤波误差.与现有的针对机械臂的命令滤波反步跟踪控制相比,跟踪误差可以渐近收敛到零,并且只需要设计一个自适应参数.最后,通过仿真验证该方案的有效性.  相似文献   

7.
轮式移动机器人的位置量测输出反馈轨迹跟踪控制   总被引:1,自引:0,他引:1  
针对机器人的姿态角难以精确测量的困难,本文研究基于位置测量的轮式移动机器人的轨迹跟踪问题.首先提出一种利用机器人的位置信息估计其姿态角的降维状态观测器,当机器人的线速度严格大于零时,可保证姿态角观测误差的指数收敛.然后给出一种新的状态反馈轨迹跟踪控制律,当参考轨迹满足一定的激励条件时,可以保证机器人的线速度严格大于零且跟踪误差全局渐近收敛.进一步结合姿态角观测器和状态反馈控制律,得到一种输出反馈轨迹跟踪控制算法.理论分析表明,当参考轨迹满足一定的激励条件时,所提出的输出反馈控制算法可以保证跟踪误差的全局渐近收敛.最后对所提出的姿态角观测器、状态反馈和输出反馈轨迹跟踪控制算法进行了仿真验证,证实了算法的有效性,并且当存在位置测量误差时,所提出的输出反馈轨迹跟踪控制算法仍可以保证机器人对参考轨迹的实际跟踪.  相似文献   

8.
Composite adaptation and learning techniques were initially proposed for improving parameter convergence in adaptive control and have generated considerable research interest in the last three decades, inspiring numerous robot control applications. The key idea is that more sources of parametric information are applied to drive parameter estimates aside from trajectory tracking errors. Both composite adaptation and learning can ensure superior stability and performance. However, composite learning possesses a unique feature in that online data memory is fully exploited to extract parametric information such that parameter convergence can be achieved without a stringent condition termed persistent excitation. In this article, we provide the first systematic and comprehensive survey of prevalent composite adaptation and learning approaches for robot control, especially focusing on exponential parameter convergence. Composite adaptation is classified into regressor-filtering composite adaptation and error-filtering composite adaptation, and composite learning is classified into discrete-data regressor extension and continuous-data regressor extension. For the sake of clear presentation and better understanding, a general class of robotic systems is applied as a unifying framework to show the motivation, synthesis, and characteristics of each parameter estimation method for adaptive robot control. The strengths and deficiencies of all these methods are also discussed sufficiently. We have concluded by suggesting possible directions for future research in this area.  相似文献   

9.
Here, a novel adaptive neural sliding mode controller (ANSMC) is proposed to handle the coupling and dynamic uncertainty of MIMO systems. The structure of this model-free new controller is based on a radial basis function neural network (RBFNN) which is derived from Lyapunov stability theory and relaxing Kalman–Yacubovich lemma to monitor the system for tracking a user-defined reference model. The weights of RBFNN can be initialized at zero, then, a novel online tuning algorithm is developed based on Lyapunov stability theory. A boundary layer function is introduced into the updating law to cover the parameter errors and modeling errors, and to guarantee the state errors converge into a specified error bound. An e-modification is added into the updating law to release the assumption of persistent excitation and obtain the appropriate values of the connecting weights of a RBFNN. To evaluate the control performance of the proposed controller, a two-link robot system is chosen as the simulation case. The numerical simulations results show that this novel controller has very good tracking accuracy, stability and robustness.  相似文献   

10.
Model reference adaptive control problem is considered for a class of reference inputs dependent upon the unknown parameters of the system. Due to the uncertainty in the reference input, the tracking objective cannot be achieved without parameter convergence. The common approach of injecting persistent excitation (PE) in the reference input leads to tracking of the excited reference input as opposed to the true one. A new technique, named intelligent excitation, is presented for introducing an excitation signal in the reference input and regulating its amplitude, dependent upon the convergence of the output tracking and parameter errors. Intelligent excitation ensures parameter convergence, similar to conventional PE; it vanishes as the errors converge to zero and reinitiates with every change in the unknown parameters. As a result, the regulated output tracks the desired reference input and not the excited one.  相似文献   

11.
Adaptive control of robot manipulators with flexible joints   总被引:2,自引:0,他引:2  
Presents an adaptive control scheme for flexible joint robot manipulators. Asymptotic stability is insured regardless of the joint flexibility value, i.e., the results are not restricted to weak joint elasticity. Moreover, the joint flexibility is not assumed to be known. Joint position and velocity tracking errors are shown to converge to zero with all the signals in the system remaining bounded  相似文献   

12.
A neural network (NN)-based adaptive controller with an observer is proposed for the trajectory tracking of robotic manipulators with unknown dynamics nonlinearities. It is assumed that the robotic manipulator has only joint angle position measurements. A linear observer is used to estimate the robot joint angle velocity, while NNs are employed to further improve the control performance of the controlled system through approximating the modified robot dynamics function. The adaptive controller for robots with an observer can guarantee the uniform ultimate bounds of the tracking errors and the observer errors as well as the bounds of the NN weights. For performance comparisons, the conventional adaptive algorithm with an observer using linearity in parameters of the robot dynamics is also developed in the same control framework as the NN approach for online approximating unknown nonlinearities of the robot dynamics. Main theoretical results for designing such an observer-based adaptive controller with the NN approach using multilayer NNs with sigmoidal activation functions, as well as with the conventional adaptive approach using linearity in parameters of the robot dynamics are given. The performance comparisons between the NN approach and the conventional adaptation approach with an observer is carried out to show the advantages of the proposed control approaches through simulation studies  相似文献   

13.
具有柔性关节的轻型机械臂因其自重轻、响应迅速、操作灵活等优点,取得了广泛应用;针对具有柔性关节的机械臂系统的关节空间轨迹跟踪控制系统动力学参数不精确的问题,提出一种结合滑模变结构设计的自适应控制器算法;通过自适应控制的思想对系统动力学参数进行在线辨识,并采用Lyapunov方法证明了闭环系统的稳定性;仿真结果表明,该控制策略保证了机械臂系统对期望轨迹的快速跟踪,具有良好的跟踪精度,系统具有稳定性。  相似文献   

14.
This article presents two new adaptive schemes for the motion control of robot manipulators. The proposed controllers are very general and computationally efficient because they do not require knowledge of either the mathematical model or the parameter values of the manipulator dynamics, and are implemented without calculation of the robot inverse dynamics or inverse kinematic transformation. It is shown that the control strategies are globally stable in the presence of bounded disturbances, and that in the absence of disturbances the ultimate bound on the size of the tracking errors can be made arbitrarily small. Computer simulation results are given for a PUMA 560 manipulator, and demonstrate that accurate and robust trajectory tracking can be achieved by using the proposed controllers. Experimental results are presented for an IMI Zebra Zero manipulator and confirm that the control schemes provide a simple and effective means of obtaining high-performance trajectory tracking. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
This article presents a new class of adaptive schemes for the motion control of robot manipulators. The proposed controllers are very general and computationally efficient because they do not require knowledge of either the mathematical model or the parameter values of the manipulator dynamics, and are implemented without calculation of the robot inverse dynamics or inverse kinematic transformations. It is shown that the control strategies are globally uniformly bounded in the presence of bounded disturbances, and that in the absence of disturbances the ultimate bound on the size of the tracking errors can be made arbitrarily small. Computer simulation results are given for a PUMA 560 manipulator, and demonstrate that accurate and robust trajectory tracking can be achieved by using the proposed controllers. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
This paper addresses the trajectory tracking control of a nonholonomic wheeled mobile manipulator with parameter uncertainties and disturbances. The proposed algorithm adopts a robust adaptive control strategy where parametric uncertainties are compensated by adaptive update techniques and the disturbances are suppressed. A kinematic controller is first designed to make the robot follow a desired end-effector and platform trajectories in task space coordinates simultaneously. Then, an adaptive control scheme is proposed, which ensures that the trajectories are accurately tracked even in the presence of external disturbances and uncertainties. The system stability and the convergence of tracking errors to zero are rigorously proven using Lyapunov theory. Simulations results are given to illustrate the effectiveness of the proposed robust adaptive control law in comparison with a sliding mode controller.  相似文献   

17.
Based on a combination of a PD controller and a switching type two-parameter compensation force, an iterative learning controller with a projection-free adaptive algorithm is presented in this paper for repetitive control of uncertain robot manipulators. The adaptive iterative learning controller is designed without any a priori knowledge of robot parameters under certain properties on the dynamics of robot manipulators with revolute joints only. This new adaptive algorithm uses a combined time-domain and iteration-domain adaptation law allowing to guarantee the boundedness of the tracking error and the control input, in the sense of the infinity norm, as well as the convergence of the tracking error to zero, without any a priori knowledge of robot parameters. Simulation results are provided to illustrate the effectiveness of the learning controller.  相似文献   

18.
A novel robust adaptive control algorithm is proposed and implemented in real-time on two degrees-of-freedom (DOF) of the humanoid Bristol-Elumotion-Robotic-Torso II (BERT II) arm in joint-space. In addition to having a significant robustness property for the tracking, the algorithm also features a sliding-mode term based adaptive law that captures directly the parameter estimation error. An auxiliary filtered regression vector and filtered computed torque is introduced. This allows the definition of another auxiliary matrix, a filtered regression matrix, which facilitates the introduction of a sliding mode term into the adaptation law. Parameter error convergence to zero can be guaranteed within finite-time with a Persistent-Excitation (PE) condition or Sufficient Richness condition for the demand. The proposed scheme also exhibits robustness both in the tracking and parameter estimation errors to any bounded additive disturbance. This theoretical result is then exemplified for the BERT II robot arm in simulation and for experiments.  相似文献   

19.
针对具有未知动态的电驱动机器人,研究其自适应神经网络控制与学习问题.首先,设计了稳定的自适应神经网络控制器,径向基函数(RBF)神经网络被用来逼近电驱动机器人的未知闭环系统动态,并根据李雅普诺夫稳定性理论推导了神经网络权值更新律.在对回归轨迹实现跟踪控制的过程中,闭环系统内部信号的部分持续激励(PE)条件得到满足.随着PE条件的满足,设计的自适应神经网络控制器被证明在稳定的跟踪控制过程中实现了电驱动机器人未知闭环系统动态的准确逼近.接着,使用学过的知识设计了新颖的学习控制器,实现了闭环系统稳定、改进了控制性能.最后,通过数字仿真验证了所提控制方法的正确性和有效性.  相似文献   

20.
An adaptive fixed‐time trajectory tracking controller is proposed for uncertain mechanical systems in this study. The polynomial reference trajectory is planned for trajectory tracking error. Fractional power of linear sliding mode is applied to design the nonlinear controller, adaptive laws are used to adjust controller parameters. Trajectory planning and fractional power are combined to ensure the tracking‐error convergence in a fixed time. The boundary layer technique is used to suppress the model uncertainties and decrease the chattering phenomenon. The closed‐loop system stability is proved strictly in the Lyapunov framework to show that the trajectory tracking errors and adaptive parameters tend to zero in a fixed time set in advance. Numerical simulation results of robotic manipulators illustrate the effectiveness of the proposed controller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号