首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Exploration of high‐efficiency, economical, and ultrastable electrocatalysts for the oxygen reduction reaction (ORR) to substitute precious Pt is of great significance in electrochemical energy conversion devices. Single‐atom catalysts (SACs) have sparked tremendous interest for their maximum atom‐utilization efficiency and fascinating properties. Therefore, the development of effective synthetic methodology toward SACs becomes highly imperative yet still remains greatly challenging. Herein, a reliable SiO2‐templated strategy is elaborately designed to synthesize atomically dispersed Fe atoms anchored on N‐doped carbon nanospheres (denoted as Fe–N–C HNSs) using the cheap and sustainable biomaterial of histidine (His) as the N and C precursor. By virtue of the numerous atomically dispersed Fe–N4 moieties and unique spherical hollow architecture, the as‐fabricated Fe–N–C HNSs exhibit excellent ORR performance in alkaline medium with outstanding activity, high long‐term stability, and superior tolerance to methanol crossover, exceeding the commercial Pt/C catalyst and most previously reported non‐precious‐metal catalysts. This present synthetic strategy will provide new inspiration to the fabrication of various high‐efficiency single‐atom catalysts for diverse applications.  相似文献   

2.
Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt‐free and Fe‐free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high‐performance nitrogen‐coordinated single Co atom catalyst is derived from Co‐doped metal‐organic frameworks (MOFs) through a one‐step thermal activation. Aberration‐corrected electron microscopy combined with X‐ray absorption spectroscopy virtually verifies the CoN4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half‐wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe‐based catalysts and 60 mV lower than Pt/C ‐60 μg Pt cm?2). Fuel cell tests confirm that catalyst activity and stability can translate to high‐performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well‐dispersed CoN4 active sites embedded in 3D porous MOF‐derived carbon particles, omitting any inactive Co aggregates.  相似文献   

3.
Manganese (Mn) is generally regarded as not being sufficiently active for the oxygen reduction reaction (ORR) compared to other transition metals such as Fe and Co. However, in biology, manganese‐containing enzymes can catalyze oxygen‐evolving reactions efficiently with a relative low onset potential. Here, atomically dispersed O and N atoms coordinated Mn active sites are incorporated within graphene frameworks to emulate both the structure and function of Mn cofactors in heme–copper oxidases superfamily. Unlike previous single‐metal catalysts with general M‐N‐C structures, here, it is proved that a coordinated O atom can also play a significant role in tuning the intrinsic catalytic activities of transition metals. The biomimetic electrocatalyst exhibits superior performance for the ORR and zinc–air batteries under alkaline conditions, which is even better than that of commercial Pt/C. The excellent performance can be ascribed to the abundant atomically dispersed Mn cofactors in the graphene frameworks, confirmed by various characterization methods. Theoretical calculations reveal that the intrinsic catalytic activity of metal Mn can be significantly improved via changing local geometry of nearest coordinated O and N atoms. Especially, graphene frameworks containing the Mn‐N3O1 cofactor demonstrate the fastest ORR kinetics due to the tuning of the d electronic states to a reasonable state.  相似文献   

4.
The selective hydrogenation of acetylene to ethylene in an ethylene‐rich gas stream is an important process in the chemical industry. Pd‐based catalysts are widely used in this reaction due to their excellent hydrogenation activity, though their selectivity for acetylene hydrogenation and durability need improvement. Herein, the successful synthesis of atomically dispersed Pd single‐atom catalysts on nitrogen‐doped graphene (Pd1/N‐graphene) by a freeze‐drying‐assisted method is reported. The Pd1/N‐graphene catalyst exhibits outstanding activity and selectivity for the hydrogenation of C2H2 with H2 in the presence of excess C2H4 under photothermal heating (UV and visible‐light irradiation from a Xe lamp), achieving 99% conversion of acetylene and 93.5% selectivity to ethylene at 125 °C. This remarkable catalytic performance is attributed to the high concentration of Pd active sites on the catalyst surface and the weak adsorption energy of ethylene on isolated Pd atoms, which prevents C2H4 hydrogenation. Importantly, the Pd1/N‐graphene catalyst exhibits excellent durability at the optimal reaction temperature of 125 °C, which is explained by the strong local coordination of Pd atoms by nitrogen atoms, which suppresses the Pd aggregation. The results presented here encourage the wider pursuit of solar‐driven photothermal catalyst systems based on single‐atom active sites for selective hydrogenation reactions.  相似文献   

5.
Controlled synthesis of highly efficient, stable, and cost‐effective oxygen reaction electrocatalysts with atomically‐dispersed Me–Nx–C active sites through an effective strategy is highly desired for high‐performance energy devices. Herein, based on regenerated silk fibroin dissolved in ferric chloride and zinc chloride aqueous solution, 2D porous carbon nanosheets with atomically‐dispersed Fe–Nx–C active sites and very large specific surface area (≈2105 m2 g?1) are prepared through a simple thermal treatment process. Owing to the 2D porous structure with large surface area and atomic dispersion of Fe–Nx–C active sites, the as‐prepared silk‐derived carbon nanosheets show superior electrochemical activity toward the oxygen reduction reaction with a half‐wave potential (E1/2) of 0.853 V, remarkable stability with only 11 mV loss in E1/2 after 30 000 cycles, as well as good catalytic activity toward the oxygen evolution reaction. This work provides a practical and effective approach for the synthesis of high‐performance oxygen reaction catalysts towards advanced energy materials.  相似文献   

6.
The oxygen reduction reaction (ORR) plays an important role in the fields of energy storage and conversion technologies, including metal–air batteries and fuel cells. The development of nonprecious metal electrocatalysts with both high ORR activity and durability to replace the currently used costly Pt‐based catalyst is critical and still a major challenge. Herein, a facile and scalable method is reported to prepare ZIF‐8 with single ferrocene molecules trapped within its cavities (Fc@ZIF‐8), which is utilized as precursor to porous single‐atom Fe embedded nitrogen‐doped carbon (Fe–N–C) during high temperature pyrolysis. The catalyst shows a half‐wave potential (E1/2) of 0.904 V, 67 mV higher than commercial Pt/C catalyst (0.837 V), which is among the best compared with reported results for ORR. Significant electrochemical properties are attributed to the special configuration of Fc@ZIF‐8 transforming into a highly dispersed iron–nitrogen coordination moieties embedded carbon matrix.  相似文献   

7.
Single‐atom catalysts (SACs) have attracted extensive attention in the catalysis field because of their remarkable catalytic activity, gratifying stability, excellent selectivity, and 100% atom utilization. With atomically dispersed metal active sites, Fe‐N‐C SACs can mimic oxidase by activating O2 into reactive oxygen species, O2?? radicals. Taking advantages of this property, single‐atom nanozymes (SAzymes) can become a great impetus to develop novel biosensors. Herein, the performance of Fe‐N‐C SACs as oxidase‐like nanozymes is explored. Besides, the Fe‐N‐C SAzymes are applied in biosensor areas to evaluate the activity of acetylcholinesterase based on the inhibition toward nanozyme activity by thiols. Moreover, this SAzymes‐based biosensor is further used for monitoring the amounts of organophosphorus compounds.  相似文献   

8.
The development of cost‐effective catalysts to replace noble metal is attracting increasing interests in many fields of catalysis and energy, and intensive efforts are focused on the integration of transition‐metal sites in carbon as noble‐metal‐free candidates. Recently, the discovery of single‐atom dispersed catalyst (SAC) provides a new frontier in heterogeneous catalysis. However, the electrocatalytic application of SAC is still subject to several theoretical and experimental limitations. Further advances depend on a better design of SAC through optimizing its interaction with adsorbates during catalysis. Here, distinctive from previous studies, favorable 3d electronic occupation and enhanced metal–adsorbates interactions in single‐atom centers via the construction of nonplanar coordination is achieved, which is confirmed by advanced X‐ray spectroscopic and electrochemical studies. The as‐designed atomically dispersed cobalt sites within nonplanar coordination show significantly improved catalytic activity and selectivity toward the oxygen reduction reaction, approaching the benchmark Pt‐based catalysts. More importantly, the illustration of the active sites in SAC indicates metal‐natured catalytic sites and a media‐dependent catalytic pathway. Achieving structural and electronic engineering on SAC that promotes its catalytic performances provides a paradigm to bridge the gap between single‐atom catalysts design and electrocatalytic applications.  相似文献   

9.
A transition‐metal–nitrogen/carbon (TM–N/C, TM = Fe, Co, Ni, etc.) system is a popular, nonprecious‐metal oxygen reduction reaction (ORR) electrocatalyst for fuel cell and metal–air battery applications. However, there remains a lack of comprehensive understanding about the ORR electrocatalytic mechanism on these catalysts, especially the roles of different forms of metal species on electrocatalytic performance. Here, a novel Cu?N/C ORR electrocatalyst with a hybrid Cu coordination site is successfully fabricated with a simple but efficient metal–organic‐framework‐based, metal‐doping‐induced synthesis strategy. By directly pyrolyzing Cu‐doped zeolitic‐imidazolate‐framework‐8 polyhedrons, the obtained Cu?N/C catalyst can achieve a high specific surface area of 1182 m2 g?1 with a refined hierarchical porous structure and a high surface N content of 11.05 at%. Moreover, regulating the Cu loading can efficiently tune the states of Cu(II) and Cu0, resulting in the successful construction of a highly active hybrid coordination site of N?Cu(II)?Cu0 in derived Cu?N/C catalysts. As a result, the optimized 25% Cu?N/C catalyst possesses a high ORR activity and stability in 0.1 m KOH solution, as well as excellent performance and stability in a Zn–air battery.  相似文献   

10.
The rational design of catalytically active sites in porous materials is essential in electrocatalysis. Herein, atomically dispersed Fe‐Nx sites supported by hierarchically porous carbon membranes are designed to electrocatalyze the hydrazine oxidation reaction (HzOR), one of the key techniques in electrochemical nitrogen transformation. The high intrinsic catalytic activity of the Fe‐Nx single‐atom catalyst together with the uniquely mixed micro‐/macroporous membrane support positions such an electrode among the best‐known heteroatom‐based carbon anodes for hydrazine fuel cells. Combined with advanced characterization techniques, electrochemical probe experiments, and density functional theory calculation, the pyrrole‐type Fe? N4 structure is identified as the real catalytic site in HzOR.  相似文献   

11.
Single‐atom catalysts (SACs) are the smallest entities for catalytic reactions with projected high atomic efficiency, superior activity, and selectivity; however, practical applications of SACs suffer from a very low metal loading of 1–2 wt%. Here, a class of SACs based on atomically dispersed transition metals on nitrogen‐doped carbon nanotubes (MSA‐N‐CNTs, where M = Ni, Co, NiCo, CoFe, and NiPt) is synthesized with an extraordinarily high metal loading, e.g., 20 wt% in the case of NiSA‐N‐CNTs, using a new multistep pyrolysis process. Among these materials, NiSA‐N‐CNTs show an excellent selectivity and activity for the electrochemical reduction of CO2 to CO, achieving a turnover frequency (TOF) of 11.7 s?1 at ?0.55 V (vs reversible hydrogen electrode (RHE)), two orders of magnitude higher than Ni nanoparticles supported on CNTs.  相似文献   

12.
Single‐atom catalysts are heterogeneous catalysts with atomistically dispersed atoms acting as a catalytically active center, and have recently attracted much attention owing to the minimal use of noble metals. However, a scalable and inexpensive support that can stably anchor isolated atoms remains a challenge due to high surface energy. Here, copper‐halide polymer nanowires with sub‐nanometer pores are proposed as a versatile support for single‐atom catalysts. The synthesis of the nanowires is straightforward and completed in a few minutes. Well‐defined sub‐nanometer pores and a large free volume of the nanowires are advantageous over any other support material. The nanowires can anchor various atomistically dispersed metal atoms into the sub‐nanometer pores up to ≈3 at% via a simple solution process, and this value is at least twice as big as previously reported data. The hydrogen evolution reaction activity of ?18.0 A mgPt?1 at ?0.2 V overpotential shows its potential for single‐atom catalysts support.  相似文献   

13.
Direct electrocatalytic reduction of N2 to NH3 under mild conditions is attracting considerable interests but still remains enormous challenges in terms of respect of intrinsic catalytic activity and limited electrocatalytic efficiency. Herein, a photo-enhanced strategy is developed to improve the NRR activity on Cu single atoms catalysts. The atomically dispersed Cu single atoms supported TiO2 nanosheets (Cu SAs/TiO2) achieve a Faradaic Efficiency (12.88%) and NH3 yield rate (6.26 µg h−1 mgcat−1) at −0.05 V versus RHE under the light irradiation field, in which NH3 yield rate is fivefold higher than that under pure electrocatalytic nitrogen reduction reaction (NRR) process and is remarkably superior in comparison to most of the similar type electrocatalysts. The existence of external light field improves electron transfer ability between Cu O and Ti O, and thus optimizes the accumulation of surface charges on Cu sites, endowing more electrons involved in nitrogen fixation. This work reveals an atomic-scale mechanistic understanding of field effect-enhanced electrochemical performance of catalysts and it provides predictive guidelines for the rational design of photo-enhanced electrochemical N2 reduction catalysts.  相似文献   

14.
High‐performance and inexpensive platinum‐group‐metal (PGM)‐free catalysts for the oxygen reduction reaction (ORR) in challenging acidic media are crucial for proton‐exchange‐membrane fuel cells (PEMFCs). Catalysts based on Fe and N codoped carbon (Fe–N–C) have demonstrated promising activity and stability. However, a serious concern is the Fenton reactions between Fe2+ and H2O2 generating active free radicals, which likely cause degradation of the catalysts, organic ionomers within electrodes, and polymer membranes used in PEMFCs. Alternatively, Co–N–C catalysts with mitigated Fenton reactions have been explored as a promising replacement for Fe and PGM catalysts. Therefore, herein, the focus is on Co–N–C catalysts for the ORR relevant to PEMFC applications. Catalyst synthesis, structure/morphology, activity and stability improvement, and reaction mechanisms are discussed in detail. Combining experimental and theoretical understanding, the aim is to elucidate the structure–property correlations and provide guidance for rational design of advanced Co catalysts with a special emphasis on atomically dispersed single‐metal‐site catalysts. In the meantime, to reduce H2O2 generation during the ORR on the Co catalysts, potential strategies are outlined to minimize the detrimental effect on fuel cell durability.  相似文献   

15.
Single‐atom catalysts (SACs) aim at bridging the gap between homogeneous and heterogeneous catalysis. The challenge is the development of materials with ligands enabling coordination of metal atoms in different valence states, and preventing leaching or nanoparticle formation. Graphene functionalized with nitrile groups (cyanographene) is herein employed for the robust coordination of Cu(II) ions, which are partially reduced to Cu(I) due to graphene‐induced charge transfer. Inspired by nature's selection of Cu(I) in enzymes for oxygen activation, this 2D mixed‐valence SAC performs flawlessly in two O2‐mediated reactions: the oxidative coupling of amines and the oxidation of benzylic C? H bonds toward high‐value pharmaceutical synthons. High conversions (up to 98%), selectivities (up to 99%), and recyclability are attained with very low metal loadings in the reaction. The synergistic effect of Cu(II) and Cu(I) is the essential part in the reaction mechanism. The developed strategy opens the door to a broad portfolio of other SACs via their coordination to various functional groups of graphene, as demonstrated by successful entrapment of FeIII/FeII single atoms to carboxy‐graphene.  相似文献   

16.
The electrocatalytic nitrogen reduction reaction (NRR) is a promising catalytic system for N2 fixation in ambient conditions. Currently, metal‐based catalysts are the most widely studied catalysts for electrocatalytic NRR. Unfortunately, the low selectivity and poor resistance to acids and bases, and the low Faradaic efficiency, production rate, and stability of metal‐based catalysts for NRR make them uncompetitive for the synthesis of ammonia in comparison to the industrial Haber–Bosch process. Inspired by applications of carbon‐based metal‐free catalysts (CMFCs) for the oxygen reduction reaction (ORR) and CO2 reduction reaction (CO2RR), the studies of these CMFCs in electrocatalytic NRR have attracted great attention in the past year. However, due to the differences in electrocatalytic NRR, there are several critical issues that need to be addressed in order to achieve rational design of advanced carbon‐based metal‐free electrocatalysts to improve activity, selectivity, and stability for NRR. Herein, the recent developments in the field of carbon‐based metal‐free NRR catalysts are presented, along with critical issues, challenges, and perspectives concerning metal‐free catalysts for electrocatalytic reduction of nitrogen for synthesis of ammonia at ambient conditions.  相似文献   

17.
The utilization of appropriate supports for constructing single‐atom‐catalysts is of vital importance to achieve high catalytic performances, as the strong mutual interactions between the atomically dispersed metal atoms and supports significantly influence their electronic properties. Herein, it is reported that atomic cobalt species (ACS) anchored 2D tellurium nanosheets (Te NS) can act as a highly active single‐atom cocatalyst for boosting photocatalytic H2 production and CO2 reduction reactions under visible light irradiation, wherein Te NS serves as the ideal support material to bridge the light absorbers and ACS catalytic sites for efficient electron transfer. X‐ray absorption near‐edge structure spectroscopy reveals that the ACS are built by a Co center coordinated with five Co? O bonding, which are anchored on Te NS through one Co? Te bonding. The strong mutual interaction between the Te NS and ACS alters the electronic structure of Te NS, inducing the introduction of intermediate energy states, which act as trap sites to accommodate the photogenerated electrons for promoting photocatalytic reactions. This work may inspire further capability in designing other Te‐based single‐atom‐catalysts for highly efficient solar energy conversion.  相似文献   

18.
A transition‐metal–nitrogen/carbon (TM–N/C, TM = Fe, Co, Ni, etc.) system is a popular, nonprecious‐metal oxygen reduction reaction (ORR) electrocatalyst for fuel cell and metal–air battery applications. However, there remains a lack of comprehensive understanding about the ORR electrocatalytic mechanism on these catalysts, especially the roles of different forms of metal species on electrocatalytic performance. Here, a novel Cu? N/C ORR electrocatalyst with a hybrid Cu coordination site is successfully fabricated with a simple but efficient metal–organic‐framework‐based, metal‐doping‐induced synthesis strategy. By directly pyrolyzing Cu‐doped zeolitic‐imidazolate‐framework‐8 polyhedrons, the obtained Cu? N/C catalyst can achieve a high specific surface area of 1182 m2 g?1 with a refined hierarchical porous structure and a high surface N content of 11.05 at%. Moreover, regulating the Cu loading can efficiently tune the states of Cu(II) and Cu0, resulting in the successful construction of a highly active hybrid coordination site of N? Cu(II)? Cu0 in derived Cu? N/C catalysts. As a result, the optimized 25% Cu? N/C catalyst possesses a high ORR activity and stability in 0.1 m KOH solution, as well as excellent performance and stability in a Zn–air battery.  相似文献   

19.
Ammonia (NH3) is mainly produced through the traditional Haber–Bosch process under harsh conditions with huge energy consumption and massive carbon dioxide (CO2) emission. The nitrogen electroreduction reaction (NERR), as an energy-efficient and environment-friendly process of converting nitrogen (N2) to NH3 under ambient conditions, has been regarded as a promising alternative to the Haber–Bosch process and has received enormous interest in recent years. Although some exciting progress has been made, considerable scientific and technical challenges still exist in improving the NH3 yield rate and Faradic efficiency, understanding the mechanism of the reaction and promoting the wide commercialization of NERR. Single-atom catalysts (SACs) have emerged as promising catalysts because of their atomically dispersed activity sites and maximized atom efficiency, unsaturated coordination environment, and unique electronic structure, which could significantly improve the rate of reaction and yield rate of NH3. In this review, we briefly introduce the unique structural and electronic features of SACs, which contributes to comprehensively understand the reaction mechanism owing to their structural simplicity and diversity, and in turn, expedite the rational design of fantastic catalysts at the atomic scale. Then, we summarize the most recent experimental and computational efforts on developing novel SACs with excellent NERR performance, including precious metal-, nonprecious metal- and nonmetal-based SACs. Finally, we present challenges and perspectives of SACs on NERR, as well as some potential means for advanced NERR catalyst.  相似文献   

20.
Recently, nonnoble‐metal catalysts such as a metal coordinated to nitrogen doped in a carbon matrix have been reported to exhibit superior oxygen reduction reaction (ORR) activity in alkaline media. In this work, Co2P nanoparticles supported on heteroatom‐doped carbon catalysts (NBSCP) are developed with an eco‐friendly synthesis method using bean sprouts. NBSCP can be easily synthesized through metal precursor absorption and carbonization at a high temperature. It shows a very large specific surface area with various dopants such as nitrogen, phosphorus, and sulfur derived from small organic molecules. The catalyst can exhibit activity in various electrochemical reactions. In particular, excellent performance is noted for the ORR. Compared to the commercial Pt/C, NBSCP exhibits a lower onset potential, higher current density, and superior durability. This excellent ORR activity and durability is attributable to the synergistic effect between Co2P nanoparticles and nitrogen‐doped carbon. In addition, superior performance is noted on applying NBSCP to a practical anion exchange membrane fuel cell system. Through this work, the possibility of applying an easily obtained bio‐derived material to energy conversion and storage systems is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号