首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
The digitalized Instrumentation and Control (I&C) system of Nuclear power plants can provide more powerful overall operation capability, and user friendly man-machine interface. The operator can obtain more information through digital I&C system. However, while I&C system being digitalized, three issues are encountered: (1) software common-cause failure, (2) the interaction failure between operator and digital instrumentation and control system interface, and (3) the non-detectability of software failure. These failures might defeat defense echelons, and make the Diversity and Defense-in-Depth (D3) analysis be more difficult. This work developed an integrated methodology to evaluate nuclear power plant safety effect by interactions between operator and digital I&C system, and then propose improvement recommendations. This integrated methodology includes component-level software fault tree, system-level sequence-tree method and nuclear power plant computer simulation analysis. Software fault tree can clarify the software failure structure in digital I&C systems. Sequence-tree method can identify the interaction process and relationship among operator and I&C systems in each D3 echelon in a design basis event. Nuclear power plant computer simulation analysis method can further analyze the available backup facilities and allowable manual action duration for the operator when the digital I&C fail to function. Applying this methodology to evaluate the performance of digital nuclear power plant D3 design, could promote the nuclear power plant operation safety. The operator can then trust the nuclear power plant than before, when operating the highly automatic digital I&C facilities.  相似文献   

2.
A system-level PHA using the sequence-tree method is presented to perform safety-related digital I&C system SSA. The conventional PHA involves brainstorming among experts on various portions of the system to identify hazards through discussions. However, since the conventional PHA is not a systematic technique, the analysis results depend strongly on the experts’ subjective opinions. The quality of analysis cannot be appropriately controlled. Therefore, this study presents a system-level sequence tree based PHA, which can clarify the relationship among the major digital I&C systems. This sequence-tree-based technique has two major phases. The first phase adopts a table to analyze each event in SAR Chapter 15 for a specific safety-related I&C system, such as RPS. The second phase adopts a sequence tree to recognize the I&C systems involved in the event, the working of the safety-related systems and how the backup systems can be activated to mitigate the consequence if the primary safety systems fail. The defense-in-depth echelons, namely the Control echelon, Reactor trip echelon, ESFAS echelon and Monitoring and indicator echelon, are arranged to build the sequence-tree structure. All the related I&C systems, including the digital systems and the analog back-up systems, are allocated in their specific echelons. This system-centric sequence-tree analysis not only systematically identifies preliminary hazards, but also vulnerabilities in a nuclear power plant. Hence, an effective simplified D3 evaluation can also be conducted.  相似文献   

3.
The paper presents two types of a passive safety containment for a near future BWR. They are named Mark S and Mark X containment. One of their common merits is very low peak pressure at severe accidents without venting the containment atmosphere to the environment. The PCV pressure can be moderated within the design pressure. Another merit is the capability to submerge the PCV and the RPV above the core level. The third merit is robustness against external events such as a large commercial airplane crash. Both the containments have a passive cooling core catcher that has radial cooling channels. The Mark S containment is made of reinforced concrete and applicable to a large power BWR up to 1830 MWe. The Mark X containment has the steel secondary containment and can be cooled by natural circulation of outside air. It can accommodate a medium power BWR up to 1380 MWe. In both cases the plants have active and passive safety systems constituting in-depth hybrid safety (IDHS). The IDHS provides not only hardware diversity between active and passive safety systems but also more importantly diversity of the ultimate heat sinks between the atmosphere and the sea water. Although the plant concept discussed in the paper uses well-established technology, plant performance including economy is innovatively and evolutionally improved. Nothing is new in the hardware but everything is new in the performance.  相似文献   

4.
The paper presents variations of a certain passive safety containment for a near future BWR. It is tentatively named Mark S containment in the paper. It uses the operating dome as the upper secondary containment vessel (USCV) to where the pressure of the primary containment vessel (PCV) can be released through the upper vent pipes. One of the merits of the Mark S containment is very low peak pressure at severe accidents without venting the containment atmosphere to the environment. Another merit is the capability to submerge the PCV and the reactor pressure vessel (RPV) above the core level by flooding water from the gravity-driven cooling system (GDCS) pool and the upper pool. The third merit is robustness against external events such as a large commercial airplane crash owing to the reinforced concrete USCV. The Mark S containment is applicable to a large reactor that generates 1830 MW electric power. The paper presents several examples of BWRs that use the Mark S containment. In those examples active safety systems and passive safety systems function independently and constitute in-depth hybrid safety (IDHS). The concept of the IDHS is also presented in the paper.  相似文献   

5.
To estimate the success criteria of an operator's action time for a probabilistic safety/risk assessment (PSA/PRA) of a nuclear power plant, the information from a safety analysis report (SAR) and/or that by using a simplified simulation code such as the MAAP code has been used in a conventional PSA. However, the information from these is often too conservative to perform a realistic PSA for a risk-informed application. To reduce the undue conservatism, the use of a best-estimate thermal hydraulic code has become an essential issue in the latest PSA and it is now recognized as a suitable tool. In the same context, the ‘ASME PRA standard’ also recommends the use of a best-estimate code to improve the quality of a PSA. In Korea, a platform to use a best-estimate thermal hydraulic code called the MARS code has been developed for the PSA of the Korea standard nuclear power plant (KSNP). This study has proposed an estimation method for an operator's action time by using the MARS platform. The typical example case is a small break loss of coolant accident without the high pressure safety injection system, which is one of the most important accident sequences in the PSA of the KSNP. Under the given accident sequence, the operator has to perform a recovery action known as a fast cooldown operation. This study focuses on two aspects regarding an operator's action; one is how they can operate it under some restrictions; the other is how much time is available to mitigate this accident sequence. To assess these aspects, this study considered: (1) the operator's action model and (2) the starting time of the operation. To show an effect due to an operator's action, three kinds of control models (the best-fitting, the conservative, and the proportional-integral) have been assessed. This study shows that the developed method and the platform are useful tools for this type of problem and they can provide a valuable insight related to an operator's actions.  相似文献   

6.
The methods developed for full-power probabilistic safety assessment, including thermal-hydraulic methods, have been widely applied to low power and shutdown conditions. Experience from current low power and shutdown probabilistic safety assessments, however, indicates that the thermal-hydraulic methods developed for full-power probabilistic safety assessments are not always reliable when applied to low power and shutdown conditions and consequently may yield misleading and inaccurate risk insights. To increase the usefulness of the low power and shutdown risk insights, the current methods and tools used for thermal-hydraulic calculations should be examined to ascertain whether they function effectively for low power and shutdown conditions. In this study, a platform for relatively detailed thermal-hydraulic calculations applied to low power and shutdown conditions in a pressurized water reactor was developed based on the best estimate thermal-hydraulic analysis code, MARS2.1. To confirm the applicability of the MARS platform to low power and shutdown conditions, many thermal-hydraulic analyses were performed for the selected topic, i.e. the loss of shutdown cooling events for various plant operating states at the Korean standard nuclear power plant. The platform developed in this study can deal effectively with low power and shutdown conditions, as well as assist the accident sequence analysis in low power and shutdown probabilistic safety assessments by providing fundamental data. Consequently, the resulting analyses may yield more realistic and accurate low power and shutdown risk insights.  相似文献   

7.
This work developed an advanced boiling water reactor (ABWR) feedwater pump and controller model, which was incorporated into Personal Computer Transient Analyzer (PCTran)-ABWR, a nuclear power plant simulation code. The feedwater pump model includes three turbine-driven feedwater pumps and one motor-driven feedwater pump. The feedwater controller includes a one-element/three-element water level controller and a specific feedwater speed controller for each feedwater pump. The performance tests, including step change of dome pressure, feedwater pumps transfer, inadvertent closure of all turbine control valves, and one feedwater pump trip at 100% power, demonstrate the feasibility of dynamic response of stand-alone model and incorporated model. Furthermore, a diversity and defense-in-depth analysis is performed to demonstrate the feasibility for motor-driven feedwater pump as an emergency core cooling system (ECCS) automatic diverse back-up. In Lungmen nuclear power plant (NPP), a diverse manual initiation means for the high pressure core flooder (HPCF) loop C is designed as the back-up of digitalized engineered safety features actuation system (ESFAS). If the motor-driven feedwater pump (MDFWP) can be an automatic digital diverse back-up for ESFAS, Lungmen NPP would be more robust to defend against software common-cause failure (CCF).  相似文献   

8.
This paper presents the validation of RELAP5/MOD3.2 model of the VVER 440 for Nuclear Power Plant (NPP) in the analysis of the following transient: “Trip off one MCP”.This validation is a process that compares the analytical results obtained by RELAP5/MOD3.2 model of the VVER 440 with measurement transient data received from Kozloduy NPP Unit #4. The baseline input deck for VVER440 was developed at the Institute for Nuclear Research and Nuclear Energy for analyses of operational occurrences, abnormal events, and design basis scenarios. It will provide a significant analytical capability for the Bulgarian technical specialists located at the Kozloduy NPP.The criteria used in selecting transient are: importance to safety, availability and suitability of data followed by suitability for RELAP5 code validation. The comparison between the RELAP5 calculations and the test data indicates a good agreement.This validation was possible through the participation of leading specialists from Kozloduy NPP and with the support of the Argonne National Laboratory, under the International Nuclear Safety Program (INSP) of the United States Department of Energy.  相似文献   

9.
10.
This paper provides a comparison between the real plant data obtained by Unit 6 of Kozloduy nuclear power plant (NPP) during the loss-of-feed water (LOFW) transient and the calculation results received by RELAP5/MOD3.2 computer model of the same NPP unit.RELAP5/MOD3.2 computer model of the VVER-1000 has been developed at the Institute for Nuclear Research and Nuclear Energy-Bulgarian Academy of Sciences (INRNE-BAS) based on Unit 6 of Kozloduy NPP. This model has been used for simulation the behavior of the real VVER-1000 NPP during the LOFW transient. Several calculations have been provided to describe how the different boundary conditions reflect on the prediction of real plant parameters.This paper discusses the results of the thermal–hydraulic sensitivity calculations of loss-of-feed water transient for VVER-1000 reactor design. The report also contains a brief summary of the main NPP systems included in the RELAP5 VVER model and the LOFW transient sequences.This report was possible through the participation of leading specialists from Kozloduy NPP and with the assistance of Argonne National Laboratory (ANL) for the United States Department of Energy (US DOE), International Nuclear Safety Program (INSP).  相似文献   

11.
In order to ensure the safe operation of the nuclear power plants accident management programs are being developed around the world. These accident management programs cover the whole spectrum of accidents, including severe accidents. A lot of work is done to investigate the severe accident phenomena and implement severe accident management in NPPs with vessel-type reactors, while less attention is paid to channel-type reactors CANDU and RBMK.Ignalina NPP with RBMK-1500 reactor has implemented symptom based emergency operation procedures, which cover management of accidents until the core damage and do not extend to core damage region. In order to ensure coverage of the whole spectrum of accidents and meet the requirements of IAEA the severe accident management guidelines have to be developed.This paper presents the basic principles and approach to management of beyond design basis accidents at Ignalina NPP. In general, this approach could be applied to NPPs with RBMK-1000 reactors that are available in Russia, but the design differences should be taken into account.  相似文献   

12.
This paper presents the results received during investigation of hydrogen generation for both types fuel assemblies—the old modernistic type of fuel assemblies (TVSM) and recently installed new one alternative type of fuel assemblies (TVSA) in case of severe accident. There are some differences between both types FAs. They have different geometry as well as different burnable poisons. To investigate behavior of new fuel assemblies during the severe conditions it have been performed comparison of fuel behavior of old type TVSM fuel assembly to new one TVSA.To perform this investigation it has been used MELCOR “input model” for Kozloduy Nuclear Power Plant (KNPP) VVER 1000. The model was developed by Institute for Nuclear Research and Nuclear Energy-Bulgarian Academy of Sciences (INRNE-BAS) for investigation of severe accident scenarios and Probabilistic Safety Analyses (PSA) level 2. The model provides a significant analytical capability for the Bulgarian technical specialists, working in the field of the NPP safety, for analysis of core and containment damaged states and the estimation of radionuclides release outside fuel cladding.It was accepted criteria for vessel integrity about hydrogen concentration to be 8%. This criterion was based on the decision of RSK (Germany commission for reactor safety).Generally based on the received results it was made conclusion that using both types of fuel assemblies it was not disturbance safety conditions of NPP.  相似文献   

13.
Phébus-FP is a multi-national collaborative programme comprising four integral and one debris bed melting and fission product release experiments. The integral experiments simulate the heat-up, degradation and fission product release and transport, thermal hydraulic response, aerosol behaviour and iodine chemistry in the containment. The total programme, including interpretation effort, runs from 1993 to ca. 2007. The experiments demonstrated new characteristics of core degradation, fission product and iodine chemistry and accident integral behaviour. PSI has participated extensively through planning support, interpretation of data from the experiments and analyses of the results to establish confidence in the models being used for plant application. A significant part of the PSI effort was performed to interpret the significance of silver iodide as an effective retention agent under typical reactor conditions. The conclusions are of an interim nature, since the data reduction and interpretation are not yet complete. The significance of the Phébus results for plant safety will be fully realised only after successful benchmarking of the computer codes against Phébus, and application to plant sequences. Such work remains in progress within the Phébus project and in various national programmes.  相似文献   

14.
15.
This paper presents an overview of instrumentation and control (I&C) systems of a pressurized water reactor (PWR) type nuclear power plant (NPP) in Korea. Yonggwang unit 3, which was constructed as a basis model for a Korea standard nuclear power plant (KSNP), is selected as an example for the presentation. This overview is derived from analyzing the I&C systems based on a top-down approach. The I&C systems consist of 30 systems. The 183 I&C cabinets are also analyzed and mapped to the systems. The overview is focused on an interface between the systems and the cabinets. This information will be used to understand the implementation of the I&C systems and to group the systems for an upgrade.  相似文献   

16.
This paper presents the architecture for upgrading the instrumentation and control (I&C) systems of a Korean standard nuclear power plant (KSNP) as an operating nuclear power plant. This paper uses the analysis results of KSNP's I&C systems performed in a previous study. This paper proposes a Preparation–Decision–Design–Assessment (PDDA) process that focuses on quality oriented development, as a cyclical process to develop the architecture. The PDDA was motivated from the practice of architecture-based development used in software engineering fields. In the preparation step of the PDDA, the architecture of digital-based I&C systems was setup for an architectural goal. Single failure criterion and determinism were setup for architectural drivers. In the decision step, defense-in-depth, diversity, redundancy, and independence were determined as architectural tactics to satisfy the single failure criterion, and sequential execution was determined as a tactic to satisfy the determinism. After determining the tactics, the primitive digital-based I&C architecture was determined. In the design step, 17 systems were selected from the KSNP's I&C systems for the upgrade and functionally grouped based on the primitive architecture. The overall architecture was developed to show the deployment of the systems. The detailed architecture of the safety systems was developed by applying a 2-out-of-3 voting logic, and the detailed architecture of the non-safety systems was developed by hot-standby redundancy. While developing the detailed architecture, three ways of signal transmission were determined with proper rationales: hardwire, datalink, and network. In the assessment step, the required network performance, considering the worst-case of data transmission was calculated: the datalink was required by 120 kbps, the safety network by 5 Mbps, and the non-safety network by 60 Mbps. The architecture covered 17 systems out of 22 KSNP's I&C systems. The architecture is implementable with the equipment developed in South Korea. The architecture can be used as a model to upgrade the existing I&C systems in a planned, large-scale, and one-shot manner. A more detailed architecture down to software level will be developed in the future.  相似文献   

17.
Advanced nuclear water reactors rely on containment behaviour in realization of some of their passive safety functions. Steam condensation on containment walls, where non-condensable gas effects are significant, is an important feature of the new passive containment concepts, like the AP600/1000 ones.In this work the international reactor innovative and secure (IRIS) was taken as reference, and the relevant condensation phenomena involved within its containment were investigated with different computational tools. In particular, IRIS containment response to a small break LOCA (SBLOCA) was calculated with GOTHIC and RELAP5 codes. A simplified model of IRIS containment drywell was implemented with RELAP5 according to a sliced approach, based on the two-pipe-with-junction concept, while it was addressed with GOTHIC using several modelling options, regarding both heat transfer correlations and volume and thermal structure nodalization. The influence on containment behaviour prediction was investigated in terms of drywell temperature and pressure response, heat transfer coefficient (HTC) and steam volume fraction distribution, and internal recirculating mass flow rate. The objective of the paper is to preliminarily compare the capability of the two codes in modelling of the same postulated accident, thus to check the results obtained with RELAP5, when applied in a situation not covered by its validation matrix (comprising SBLOCA and to some extent LBLOCA transients, but not explicitly the modelling of large dry containment volumes).The option to include or not droplets in fluid mass flow discharged to the containment was the most influencing parameter for GOTHIC simulations. Despite some drawbacks, due, e.g. to a marked overestimation of internal natural recirculation, RELAP5 confirmed its capability to satisfactorily model the basic processes in IRIS containment following SBLOCA.  相似文献   

18.
19.
This paper presents the results of thermal-hydraulic calculations of a large break loss of coolant accident (LBLOCA) analysis for a VVER-1000/V446 unit at Bushehr nuclear power plant (BNPP). LBLOCA is analysis in two different beyond design basis accident (BDBA) scenarios using the RELAP5/MOD3.2 best estimate code. The scenarios are LBLOCA with station blackout (SBO) and LBLOCA with pump re-circulation blockage which have been evaluated in the final safety analysis report (FSAR) of BNPP. A model of VVER-1000 reactor based on Unit 1 of BNPP has been developed for the RELAP5/MOD3.2 thermal-hydraulics code consists of 4-loop primary and secondary systems with all their relevant sub-systems important to safety analysis. The analysis is performed without regard for operator's actions on accident management. The safety analysis is carried out and the results are checked against the acceptance criteria which are the possibility of using water inventory in the emergency core cooling system (ECCS) accumulators and the KWU tanks for core cooling and the available time to operators before the maximum design limit of fuel rod cladding damage is reached. These kinds of analyses are performed to provide the response of monitored plant parameters to identify symptoms available to the operators, timing of the loss of critical safety functions and timing of operator actions to avoid the loss of critical safety functions of core damage. The results of performed analyses show that the operators have 2.9 and 3.1 h for LBLOCA with SBO and LBLOCA with pump re-circulation blockage scenarios, respectively, before the fuel rod cladding rupture. The results are also compared with the BNPP FSAR data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号