首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe here two new specimens of the mammal Deltatheridium pretrituberculare from the Late Cretaceous period of Mongolia. These specimens provide information on tooth replacement in basal therian mammals and on lower jaw and basicranial morphology. Deltatheroidans, known previously from isolated teeth, partial rostra and jaws from the late Cretaceous of Asia and possibly North America, have been identified variously as eutherians, as basal metatherians (the stem-based clade formed by marsupials and their extinct relatives), or as an outgroup to both eutherians and metatherians. Resolution of these conflicting hypotheses and understanding of the early evolution of the therian lineage have been hampered by a sparse fossil record for basal therians. The new evidence supports metatherian affinities for deltatheroidans and allows a comprehensive phylogenetic analysis of basal metatherians and marsupials. The presence of specialized marsupial patterns of tooth replacement and cranial vascularization in Deltatheridium and the basal phylogenetic position of this taxon indicate that these features are characteristic of Metatheria as a whole. Other morphological transformations recognized here secure the previously elusive diagnosis of Metatheria. The new specimens of Deltatheridium illustrate the effectiveness of fairly complete fossil specimens in determining the nature of early evolutionary events.  相似文献   

2.
A nearly complete skeleton of a robust-bodied New World monkey that resembles living spider monkeys was recovered from undisturbed Pleistocene deposits in the Brazilian state of Bahia. The skeleton displays the highly specialized postcranial pattern typical of spider and woolly spider monkeys and shares cranial similarities to the spider monkey exclusively. It is generically distinct on the basis of its robustness (>20 kg) and on the shape of its braincase. This new genus indicates that New World monkeys nearly twice the size of those living today were part of the mammalian biomass of southern Amazonia in the late Pleistocene. The discovery of this specimen expands the known adaptive diversity of New World monkeys and demonstrates that they underwent body size expansion in the terminal Pleistocene, as did many other types of mammals.  相似文献   

3.
The adaptive significance of the scrotum and the evolution of the descent of the testicles and epididymis have been a focus of interest among biologists for a long time. In this paper we use three anatomical character states of the scrotum and descensus: (1) testicles descended and scrotal; (2) testicles descended but ascrotal; (3) testicles not descended (testicondy). These states are then mapped on an up to date phylogeny of the Mammalia. Three main points arise out of this mapping procedure: (1) the presence of a scrotum is either primitive in extant Mammalia or primitive within eutherian mammals except Insectivora; (2) evolution has generally proceeded from a scrotal condition to progressively more ascrotal; (3) loss of testicular descensus is less common in mammalian evolution than is loss of the scrotum. In the light of these findings we discuss some current hypotheses regarding the origin and evolution of the scrotum. We find that these are all incomplete in so far as it is not the presence of the scrotum in various mammal groups that requires explaining. Instead, it is the reverse process, why the scrotum has been lost in so many groups, that should be explained. We suggest that the scrotum may have evolved before the origin of mammals, in concert with the evolution of endothermy in the mammalian lineage, and that the scrotum has been lost in many groups because descensus in many respects is a costly process that will be lost in mammal lineages as soon as an alternative solution to the problem of the temperature sensitivity of spermatogenesis is available.  相似文献   

4.
Recent studies of large ganglion cells in fishes and frogs have identified a shared inventory of three basic types, with characteristic forms and spatially independent mosaic distributions. These anamniote types and mosaics are hard to match to the large ganglion cell types and mosaics of mammals, implying that the underlying developmental programmes have diverged during evolution. Reptiles and mammals both belong to the amniote lineage, so the point of divergence can be investigated by comparing the large ganglion cells of reptiles with those of mammals, taking fishes and frogs as outgroups. With this aim, ganglion cells of the common house gecko, Hemidactylus frenatus, were labelled with horse-radish peroxidase by an in vitro method and studied in retinal flatmounts. Two prominent, regular, spatially independent mosaics were consistently present. One (alpha a) was characterized by somata displaced into the inner nuclear layer and dendrites forming planar trees in sublamina a; the other (alpha ab) comprised large orthotopic somata and distinctive, bistratified dendrites that formed discrete planar subtrees in sublaminae a and b. These subtrees were joined by up to 40 vertical link segments, whose distribution was found to correlate with the underlying photoreceptor mosaic. Some specimens also contained patches of a third mosaic (alpha c), characterized by large orthotopic somata and very large flat trees in sublamina c, but the labelling of this type was inconsistent. These reptilian mosaics share several distinctive characters with anamniote alpha-cell mosaics but differ markedly from the ganglion cell mosaics of any known mammal. The most parsimonious conclusion is that those mosaic features that are shared by the ganglion cells of all nonmammals are homologous and primitive (symplesiomorphic), while those that are shared by all therian mammals are homologous and derived (synapomorphic). This is consistent with other differences between mammalian and nonmammalian eyes. Mosaic formation itself, however, seems to be a universal characteristic of large ganglion cells.  相似文献   

5.
In chordate phylogeny, changes in the nervous system, jaws, and appendages transformed meek filter feeders into fearsome predators. Gene duplication is thought to promote such innovation. Vertebrate ancestors probably had single copies of genes now found in multiple copies in vertebrates and gene maps suggest that this occurred by polyploidization. It has been suggested that one genome duplication event occurred before, and one after the divergence of ray-finned and lobe-finned fishes. Holland et al., however, have argued that because various vertebrates have several HOX clusters, two rounds of duplication occurred before the origin of jawed fishes. Such gene-number data, however, do not distinguish between tandem duplications and polyploidization events, nor whether independent duplications occurred in different lineages. To investigate these matters, we mapped 144 zebrafish genes and compared the resulting map with mammalian maps. Comparison revealed large conserved chromosome segments. Because duplicated chromosome segments in zebrafish often correspond with specific chromosome segments in mammals, it is likely that two polyploidization events occurred prior to the divergence of fish and mammal lineages. This zebrafish gene map will facilitate molecular identification of mutated zebrafish genes, which can suggest functions for human genes known only by sequence.  相似文献   

6.
Using the flexible Chapman-Richards model for describing the growth curves from birth to adulthood of 69 species of eutherian mammals, we demonstrate that growth form differs among eutherian mammals. Thereby the commonly used Gompertz model can no longer be considered as the general model for describing mammalian growth. Precocial mammals have their peak growth rate earlier in the growth process than altricial mammals. However, the position on the altricial-precocial continuum accounts for most growth-form differences only between mammalian lineages. Within mammalian genera differences in growth form are not related to precocity at birth. This indicates that growth form may have been associated with precocity at birth early in mammalian evolution, when broad patterns of body development radiated. We discuss four non-exclusive interpretations to account for the role of precocity at birth on the observed variation in growth form among mammals. Precocial and altricial mammals could differ according to (i) the distribution of energy output by the mother, (ii) the ability of the young to assimilate the milk yield, (iii) the allocation of energy by the young between competing functions and (iv) the position of birth between conception and attainment of physical maturity.  相似文献   

7.
In birds, reptiles and amphibians the IgY isotype exhibits the functional characteristics of both of IgG and IgE. Hence, the gene for IgY most likely duplicated some time during early mammalian evolution and formed the ancestor of present day IgG and IgE. To address the question of when IgY duplicated and formed two functionally distinct isotypes, and to study when IgG and IgA lost their second constant domains, we have examined the Ig expression in a non-placental mammal, the marsupial Monodelphis domestica (grey short-tailed opossum). Screening of an opossum spleen cDNA library revealed the presence of all three isotypes in marsupials. cDNA clones encoding the entire constant regions of opossum IgE (epsilon chain), IgG (gamma chain) and IgA (alpha chain) were isolated, and their nucleotide sequences were determined. A comparative analysis of the amino acid sequences for IgY, IgA, IgE and IgG from various animal species showed that opossum IgE, IgG and IgA on the phylogenetic tree form branches clearly separated from their eutherian counterparts. However, they still conform to the general structure found in eutherian IgE, IgG and IgA. Our findings indicate that all the major evolutionary changes in the Ig isotype repertoire, and in basic Ig structure that have occurred since the evolutionary separation of mammals from the early reptile lineages, occurred prior to the evolutionary separation of marsupials and placental mammals.  相似文献   

8.
An important transformation in the evolution of mammals was the loss of the epipubic bones. These are elements projecting anteriorly from the pelvic girdle into the abdominal region in a variety of Mesozoic mammals, related tritylodonts, marsupials and monotremes but not in living eutherian (placental) mammals. Here we describe a new eutherian from the Late Cretaceous period of Mongolia, and report the first record of epipubic bones in two distinct eutherian lineages. The presence of epipubic bones and other primitive features suggests that these groups occupy a basal position in the Eutheria. It has been argued that the epipubic bones support the pouch in living mammals, but epipubic bones have since been related to locomotion and suspension of the litter mass of several attached, lactating offspring. The loss of the epipubic bones in eutherians can be related to the evolution of prolonged gestation, which would not require prolonged external attachment of altricial young. Thus the occurrence of epipubic bones in two Cretaceous eutherians suggests that the dramatic modifications connected with typical placental reproduction may have been later events in the evolution of the Eutheria.  相似文献   

9.
Five different receptor subtypes for neuropeptide Y (NPY) have recently been cloned in mammals. We have discovered three distinct subtypes by PCR in the zebrafish, Danio rerio, and describe here one of these called zYc. The protein sequence identity is 46-51% to mammalian subtypes Y1, Y4 and Y6 and to zebrafish Ya, i.e., the same degree of identity as these subtypes display to one another. The identity to zYb is higher, 75%, indicating that zYb and zYc share a more recent ancestor. The zYc receptor binds NPY and PYY (peptide YY) from mammals as well as zebrafish with high affinities and has a Kd of 16 pM for 125I-pPYY. The pharmacological profile is similar to, but distinct-from, mammalian Y1. zYc inhibits cAMP synthesis. This work suggests that NPY has more receptor subtypes than any other peptide that binds to G protein-coupled receptors. Work is in progress to see if the zebrafish receptors are present in mammals.  相似文献   

10.
The foot, perhaps more than any other region of the primate body reflects the interaction of positional behaviors with the geometric properties of available supports. The ability to reverse the hind foot during hindlimb suspension while hanging from a horizontal support or descending a large diameter vertical trunk has been noted in many arboreal mammals, including primates. Observations of Varecia variegata in the wild and under seminatural conditions document hindlimb suspension in this lemurid primate. The kinematics and skeletal correlates of this behavior are examined. Analogy is made with the form and function exhibited by nonprimate mammalian taxa employing this behavior. Examples of carnivores and rodents display very similar adaptations of the tarsals while other mammals, such as the xenarthrans, accomplish a similar end by means of different morphologies. However, a suite of features is identified that is shared by mammals capable of hind foot reversal. Hindlimb suspension effectively increases the potential feeding space available to a foraging mammal and represents a significant, and often unrecognized, alternative adaptive strategy to forelimb suspension and prehensile-tail suspension in primates.  相似文献   

11.
Female space use is the best predictor of monogamy in mammals   总被引:1,自引:0,他引:1  
Monogamy is typically considered to have evolved either because biparental care is important for offspring survival, or because males are unable to monopolize more than one female due to females being too dispersed. Here, in the first phylogenetic analysis of the evolution of monogamy in mammals, we show that neither of these explanations is consistent with the distribution of monogamy across mammal species. Monogamy evolved significantly more often in the absence of paternal care than in its presence. Furthermore, monogamy does not normally occur in species where female ranges are large. Rather, the most common feature of mammalian monogamy is that it evolved where females were solitary and occupied small, exclusive ranges, enabling males to monopolize them.  相似文献   

12.
Two new toxins were purified from Leiurus quinquestriatus hebraeus (Lqh) scorpion venom, Lqh II and Lqh III. Lqh II sequence reveals only two substitutions, as compared to AaH II, the most active scorpion alpha-toxin on mammals from Androctounus australis Hector. Lqh III shares 80% sequence identity with the alpha-like toxin Bom III from Buthus occitanus mardochei. Using bioassays on mice and cockroach coupled with competitive binding studies with 125I-labeled scorpion alpha-toxins on rat brain and cockroach synaptosomes, the animal selectivity was examined. Lqh II has comparable activity to mammals as AaH II, but reveals significantly higher activity to insects attributed to its C-terminal substitution, and competes at low concentration for binding on both mammalian and cockroach sodium channels. Lqh II thus binds to receptor site 3 on sodium channels. Lqh III is active on both insects and mammals but competes for binding only on cockroach. The latter indicates that Lqh III binds to a distinct receptor site. Thus, Lqh II and Lqh III represent two different scorpion toxin groups, the alpha- and alpha-like toxins, respectively, according to the structural and pharmacological criteria. These new toxins may serve as a lead for clarification of the structural basis for insect vs mammal selectivity of scorpion toxins.  相似文献   

13.
Isolated teeth referred to the family Haramiyidae are among the earliest known fossil evidence of mammals. First discovered in European Late Triassic deposits a century and a half ago, haramiyids have been interpreted as related to multituberculates, a diverse and widespread lineage that occupied a rodent-like niche from the Late Jurassic to the Early Tertiary. Nonetheless, haramiyid relationships have remained enigmatic because the orientation and position of the teeth in the upper or lower jaw could not be determined with certainty; even their mammalian status has been questioned. The discovery of haramiyid dentaries, a maxilla and other skeletal remains in the Upper Triassic of East Greenland reveals haramiyids as highly specialized mammals with a novel pattern of puncture-crushing occlusion that differs dramatically from the grinding or shearing mechanisms of other Early Mesozoic mammals.  相似文献   

14.
15.
16.
Gametogenesis in both the male and female mammal represents a specialized and highly regulated series of cell cycle events, involving both mitosis and meiosis as well as subsequent differentiation. Recent advances in our understanding of the genetic control of the eukaryotic cell cycle have underscored the evolutionarily-conserved nature of these regulatory processes. However, most of the data have been obtained from yeast model systems and mammalian cell lines. Furthermore, most of the observations focus on regulation of mitotic cell cycles. In the present paper: (i) aspects of gametogenesis in mammals that represent unique cell-cycle control points are highlighted; (ii) current knowledge on the regulation of the germ cell cycle, in the context of what is known in yeast and other model eukaryotic systems, is summarized; and (iii) strategies that can be used to identify additional cell cycle regulating genes are outlined.  相似文献   

17.
Organization into gene clusters is an essential and diagnostic feature of Hox genes. Insect and nematode genomes possess single Hox gene clusters (split in Drosophila); in mammals, there are 38 Hox genes in four clusters on different chromosomes. A collinear relationship between chromosomal position, activation time and anterior expression limit of vertebrate Hox genes suggests that clustering may be important for precise spatiotemporal gene regulation and hence embryonic patterning. Hox genes have a wide phylogenetic distribution within the metazoa, and are implicated in the control of regionalization along the anteroposterior body axis. It has been suggested that changes in Hox gene number and genomic organization played a role in metazoan body-plan evolution, but identifying significant changes is difficult because Hox gene organization is known from only very few and widely divergent taxa (principally insects, nematodes and vertebrates). Here we analyse the complexity and organization of Hox genes in a cephalochordate, amphioxus, the taxon thought to be the sister group of the vertebrates. We find that the amphioxus genome has only one Hox gene cluster. It has similar genomic organization to the four mammalian Hox clusters, and contains homologues of at least the first ten paralogous groups of vertebrate Hox genes in a collinear array. Remarkably, this organization is compatible with that inferred for a direct ancestor of the vertebrates; we conclude that amphioxus is a living representative of a critical intermediate stage in Hox cluster evolution.  相似文献   

18.
This paper combines the results from a preliminary survey of occurrence of Cryptosporidium species in faecal samples from a range of wild mammal species inhabiting mainland Britain with a tabulated literature review of world-wide reports of the parasite in those British mammals. In the literature, C. parvum was reported from 11 wild mammals found in Britain and elsewhere, mainly in rodents but also in insectivores, lagomorphs and ungulates. C. muris has been reported only in wild rodents. The sample survey detected C. parvum in seven additional British species, including carnivores. Overall, 12% of 184 faecal samples tested with a genus-specific monoclonal antibody contained oocysts of C. parvum. The results further emphasise the widespread distribution of Cryptosporidium amongst wild mammals in Britain, highlight the potential for transmission between host species and warn of the possibility of direct exposure for anybody using the countryside for professional or recreational purposes (e.g. farmers and ramblers) to previously unregarded sources of infection. It seems increasingly likely that most, if not all, mammalian species can be infected with C. parvum.  相似文献   

19.
The complete mitochondrial genome of the alligator, Alligator mississippiensis, was sequenced. The size of the molecule is 16,642 nucleotides. Previously reported rearrangements of tRNAs in crocodile mitochondrial genomes were confirmed and, relative to mammals, no other deviations of gene order were observed. The analysis of protein-coding genes of the alligator showed an evolutionary rate that is roughly the same as in mammals. Thus, the evolutionary rate in the alligator is faster than that in birds as well as that in cold-blooded vertebrates. This contradicts hypotheses of constant body temperatures or high metabolic rate being correlated with elevated molecular evolutionary rates. It is commonly acknowledged that birds are the closest living relatives to crocodiles. Birds and crocodiles represent the only archosaurian survivors of the mass extinction at the Cretaceous/Tertiary boundary. On the basis of mitochondrial protein-coding genes, the Haemothermia hypothesis, which defines birds and mammals as sister groups and thus challenges the traditional view, could be rejected. Maximum-likelihood branch length data of amino acid sequences suggest that the divergence between the avian and crocodilian lineages took place at approximately equal to 254 MYA.  相似文献   

20.
Molecular genetics has had a major impact on phylogenetics, although many hominoid paleontologists and morphologists ignore or remain unaware of genetic data. However, substantial genetic evidence shows chimpanzees and humans as closest relatives. Living hominoids share many postcranial similarities, many of which are retained from the extant hominoid common ancestor. Miocene hominoid fossils consisted until recently mostly of teeth and jaw fragments which are relatively uninformative phylogenetically. As their postcrania have become better sampled, surprisingly few of these taxa share significant similarities with living apes, suggesting that few if any are related to specific extant lineages. Given the genetically inferred relationships of hominoids and the morphology of the earliest hominids, the common ancestor of humans and chimpanzees was probably chimp-like, a knuckle-walker with small thin-enameled cheek teeth. If correct, this scenario implies that known Miocene hominoids, most of which are postcranially archaic and have large, thickly enameled cheek teeth, throw little if any direct light on hominid origins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号