共查询到18条相似文献,搜索用时 0 毫秒
1.
共沉淀法合成La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ及其性能表征 总被引:4,自引:0,他引:4
以金属硝酸盐、氨水为沉淀剂,采用化学共沉淀法合成了La0.7Sr0.3-xCaxCo0.9Fe0.1O3-δ(简称LSCCF,x=0.05,0.10,0.15,0.20)粉料.借助差示扫描量热法-热重分析法(DSC-TG)、X射线衍射法(XRD)和扫描电子显微镜法(SEM)对600℃,800℃,1 000℃热处理4 h后LSCCF粉料的形成过程、晶体结构和粒度形貌进行了研究.实验结果表明,LSCCF粉料的形成过程分为4个阶段--脱水阶段、分解阶段、LaCoO3基氧化物形成阶段和LSCCF固溶体形成阶段;适宜热处理制度为800℃下保温4 h,且制备出的LSCCF粉料为均一的钙钛矿结构.使用直流四极探针法测定了LSCCF样品在空气气氛下的电导率,发现该体系材料在600~800℃范围的电导率都超过了250 S·cm-1,其导电机制符合p型小极化子绝热孔隙理论,且能够满足中温固体氧化物燃料电池(ITSOFC)阴极材料的要求. 相似文献
2.
采用碳酸共沉淀法得到了一种新型阴极材料LaNi0.8Cu0.2O3(LNC-82),对其进行了X射线衍射和扫描电镜的表征,并采用复合材料[Ce0.8Sm0.2O2-δ(SDC)和碳酸盐(Na2CO3 Li2CO3)]为电解质,分别以NiO和LNC-82为阳极和阴极材料,考察了在低温(400~550℃)下这种钙钛矿型阴极材料的电化学性能。实验结果表明,运用碳酸共沉淀法得到了LNC-82前驱体粉末,经过860℃煅烧2h,得到了粒度均匀的粉末,其粒径约为400~500nm。单体电池在550℃下的最大比功率和短路电流分别为390.6mW/cm2和1140.6mA/cm2。 相似文献
3.
为发展中温固体氧化物燃料电池(IT-SOFC)的阴极材料,用柠檬酸络合法合成了Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF)粉体,并在BSCF中加入一定量的金属Ag作为SOFC的阴极材料.X-ray衍射方法研究了复合阴极Ba0.5Sr0.5Co0.8Fe0.2O3-δ-xAg (BSCF-xAg,x=0%~30%质量分数)系列样品的成相情况,结果表明Ba0.5Sr0.5Co0.8Fe0.2-O3-δ(BSCF)和Ag二者在烧结过程中没有发生反应.高温电阻测试表明复合阴极材料(BSCF-xAg)比纯BSCF材料具有较高的电导率,BSCF-10%Ag的最大电导率在430℃达到24.3 S/cm,而BSCF的最大电导率在450℃,为19.1 S/cm.同时用交流阻抗法研究了BSCF-xAg复合阴极材料的性能,实验结果表明:Ag的参杂量为20%时,阴极极化电阻最小,在650℃BSCF的极化电阻为0.465 Ω·cm2,而BSCF-20%Ag的电阻仅为0.099 Ω·cm2,约为BSCF的1/5.这标志着参杂Ag的BSCF作为中低温固体氧化物燃料电池的阴极材料是非常具有发展前景的. 相似文献
4.
为降低制备阴极材料的成本、促进中温固体氧化物燃料电池(ITSOFC)的工业化进程,采用混合稀土作为主要原料.外加SrCO3、CO2O3固相法制备了Ln0.7Sr0.3CoO3-δ(简:LnSC,Ln为混合稀土)复合氧化物.TG-DSC、XRD对LnSC材料的合成过程以及不同温度下烧结行为进行了研究,并考察了LnSC材料的电性能.结果表明:混合稀土促进了SrCO3在700~950 ℃的分解反应,同时在1100℃时新相Ln07Sr0.3CoO3-δ基本形成.1200℃烧结4 h后合成产物为CeO2立方萤石相与钙钛矿相的共存.该材料电导率在340℃时达到最大值638 S/cm,500~800 ℃时,电导率超过500 S/cm,其电导活化能为7.86 kJ/mol.满足ITSOFC对阴极材料的要求. 相似文献
6.
研究了用于中低温固体氧化物燃料电池(IT-SOFC)的高性能新型阴极材料Ba<,1.0-x>Co<0 7>Fe<,0.2>Nb<,0.1>O<,3-δ>(B<,1-x>CFN,x=0,0.05,0.10).以氧化钆掺杂氧化铈(GDG)为电解质.制备了B<,1-x>CFNIIGDCIIB<,1-x>CFN和La<,0.6>Sr<,0.4>Co<,0.2>Fe<,0.8>O<,3-δ>(LSCF)IIGDCIILSCF对称电池,对比了不同组成Ba含量的B<,1-x>CFN和LSCF阴极的电化学性能;并将B<,1-x>CFN和LSCF阴极制备在NiO-GDCIIGDC阳极支撑半电池上,研究其在全电池中的性能.结果表明,500℃时,B<,1-x>CFN(x=0,0.05,0.10)的R<,p>值分别仅为LSCF的10.52%、7.72%和4.33%;650℃时,B<,1-x>CFN(x=0,0.05,0.10)的R<,p>值分别是LSCF的66.62%、51.49%和42.76%;在500~650℃,以<,1-x>CFN为阴极的单电池性能也均显著高于以LSCF为阴极的电池性能,B<,1-x>CFN电极表现出了优良的氯催化活性,是极富应用前景的中低温固体氧化物燃料电池阴极材料. 相似文献
7.
低温SOFC用阴极材料LaNi0.6Fe0.4O3 总被引:1,自引:3,他引:1
用固体氧化物燃料电池技术,考察了钙钛矿型氧化物LaNi0.6Fe0.4O3(LNF-64)作为阴极材料在低温(400℃、500℃)下的电化学性能,以复合材料[Ce0.8Sm0.2O2-δ(SDC)和碳酸盐(Na2CO3和Li2CO3)]为电解质,分别以NiO和LNF-64为阳极和阴极.结果表明,通过碳酸盐共沉淀法得到的LNF-64前驱体粉末,在900℃下煅烧4 h,形成了单一的菱形结构,粉末粒径约为300~500 nm.单体电池在500 ℃下的最大功率密度和短路电流密度分别为213 mW/cm2和720 mA/cm2. 相似文献
8.
采用溶胶-凝胶法制备了中温固体电解质镓酸镧La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)粉体材料.差式扫描量热重分析(DSC-TGA)以及X-射线粉末衍射(XRD)证实经1 250℃热处理3h后,LSGM粉体具有单一ABO3钙钛矿结构;能量散射X射线谱(EDX)检测结果表明粉体没有其他杂质元素;扫描电子显微镜法(SEM)和激光散射粒度分布分析表明平均粒径为0.9μm.采用LSGM作为电解质,阳极为Ni/GDC材料,阴极为LSCM/GDC材料,并用离心法成膜工艺组装成SOFC单电池,测量其输出特性和阻抗谱等性能.SEM表明在阳极支撑体上制备的37 μm厚的LSGM电解质膜高温烧结后与阳极的接触良好.单电池在800℃的最大功率密度为0.89 W/cm2,电化学测试表明电池开路电压高于1.0 V,说明sol-gel法合成的LSGM可以成功地应用于SOFC的电解质. 相似文献
9.
考察了在Sm0.5Sr0.5CoO3(SSC)-La0.8Sr0.2Ga0.8Mg0.15Co0.05O3(LSGMC5)/LSGMC5界面中加入柠檬酸盐法合成的LSGMC5夹层对界面的影响。考察了含不同温度焙烧的LSGMC5夹层的SSC-LSGMC5/LSGMC5/LSGMC5组合的微观结构及电化学性能。当夹层焙烧温度高于1 623 K时,夹层与电极的结合优于无夹层的电极/电解质界面,具有大的两相界面面积及三相界面长度。制备的组合的氧还原性能依赖于夹层以及电极的焙烧温度,含有1 673 K烧结夹层、1 123 K焙烧电极的样品具有最高的活性。与含固相法制备的LSGMC5夹层的样品相比,采用含柠檬酸盐法制备的夹层的组合具有更小的欧姆电阻及更高的氧还原活性。 相似文献
10.
La1-xCaxMn1-yCoyO3-δ阴极材料的电性能 总被引:1,自引:0,他引:1
降低电池叠堆的运行温度是研究固体氧化物燃料电池的一个重要目的。利用固相反应合成与直流四探针法讨论了复合掺杂阴极材料La1-xCaxMn1-yCoyO3 -δ(LCMC ,x =0 .1~ 0 .4;y =0 .1~ 0 .3 )的合成原料、组分及烧结温度等因素对其电导率的影响。实验发现 ,La0 .8Ca0 .2 Mn0 .9Co0 .1O3 -δ80 0℃时具有最高的电导率 ,而导电表观活化能却最低 ;反应原材料成分及烧结温度越高则导电性能越好。LCMC复合材料的导电机理可以用p型小极子的绝热空隙理论来解释。 相似文献
11.
12.
以金属硝酸盐、氨水为沉淀剂,采用化学共沉淀法合成了La0.7Sr0.3-xCaxCo0.9Fe0.1O3-"(简称LSCCF,x=0.05,0.10,0.15,0.20)粉料。借助差示扫描量热法-热重分析法(DSC-TG)、X射线衍射法(XRD)和扫描电子显微镜法(SEM)对600℃,800℃,1000℃热处理4h后LSCCF粉料的形成过程、晶体结构和粒度形貌进行了研究。实验结果表明,LSCCF粉料的形成过程分为4个阶段——脱水阶段、分解阶段、LaCoO3基氧化物形成阶段和LSCCF固溶体形成阶段;适宜热处理制度为800℃下保温4h,且制备出的LSCCF粉料为均一的钙钛矿结构。使用直流四极探针法测定了LSCCF样品在空气气氛下的电导率,发现该体系材料在600~800℃范围的电导率都超过了250S·cm-1,其导电机制符合p型小极化子绝热孔隙理论,且能够满足中温固体氧化物燃料电池(ITSOFC)阴极材料的要求。 相似文献
13.
采用传统固相法制备La_(0.7)Sr_(0.3)Fe_xCo_(0.9-x)Me_(0.1)O_(3–δ)系列阴极材料,通过X射线衍射(XRD)、扫描电镜(SEM)、直流四探针法对材料的结构与性能进行研究。XRD研究结果表明,掺杂不同元素、不同比例的阴极材料在1 000℃煅烧10 h,全部形成了稳定的钙钛矿结构,并且不同成分的阴极材料与电解质SDC在煅烧的过程中未发生反应,具有良好的化学稳定性。采用直流四电极法测试了La_(0.7)Sr_(0.3)Fe_xCo_(0.9-x)Me_(0.1)O_(3–δ)系列阴极材料的电导率,结果表明:在测试温度400~800℃条件下,阴极材料La_(0.7)Sr_(0.3)Fe_xCo_(0.9-x)Me_(0.1)O_(3–δ)系列具有较高的电导率,其中La_(0.7)Sr_(0.3)Fe_(0.7)Co_(0.2)Cu_(0.1)O_(3–δ)样品具有最高的电导率,在550℃时电导率达到了645.548 S/cm。 相似文献
15.
16.
采用溶胶-凝胶法合成了过渡金属掺杂的CeO2新型中温固体氧化物燃料电池(IT-SOFCs)阳极材料Ce0.8M0.2O2-δ(M=Co,Fe,Mn)(20 CDC、20 FDC、20 MDC).采用共压-共烧结法制备了以NiO-20 CDC、NiO-20 FDC、NiO-20 MDC复合阳极为支撑、以Ce0.8Gd0.2O2-δ(GDC)为电解质、以La0.8Sr0.2Co0.8Fe0.2O3-δ(LSCF)-GDC为复合阴极的单电池.利用XRD、SEM等方法对阳极材料进行了物相结构和微观形貌分析.在400~700℃范围内,以湿天然气(3%H2O)为燃料气、氧气为氧化气测试比较了三种电池的放电性能.结果表明:所制的20 CDC、20 FDC、20MDC粉体均为萤石型结构;在制备的电池中,(50%)NiO-20 CDC阳极材料具有良好的孔道结构,且具有最佳的电化学性能,在650℃时其最大电流密度为148.84 mA/cm2,最大比功率为30.91 mW/cm2. 相似文献
17.
18.
在氧气气氛下,以乙酸盐为原料,以柠檬酸为螯合剂,用溶胶凝胶法制备出了锂离子电池正极材料LiNi0.8Co0.2O2。研究了不同合成温度和Li/(Ni Co)配比对材料的结构和电化学性能的影响。XRD检测结果表明:合成温度为750℃、合成时间为18h、Li/(Ni Co)=1.10的正极材料LiNi0.8Co0.2O2具有完整的晶型结构;充放电性能测试结果表明,该材料在0.5C下,首次充放电容量分别为230.0m Ah/g和192.6m Ah/g,首次充放电效率为83.73%,经过50次循环仍有170.5m Ah g/,容量保持率为90.87%。 相似文献