首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 798 毫秒
1.
Wang L  Lou S  Chen W  Li H 《Applied optics》2010,49(32):6196-6200
Single-polarization single-mode (SPSM) fiber can efficiently eliminate polarization mode coupling, polarization mode dispersion, and polarization-dependent loss. Up to now, most single-polarization fibers have been designed based on form birefringence, which would result in a non-Gaussian field distribution and a small effective mode field area. In this paper, a novel structure of SPSM photonic crystal fibers based on the resonant coupling phenomena is proposed and analyzed by using a full-vector finite-element method with a second-order transparent boundary condition. From the numerical results it is confirmed that this fiber has a near-Gaussian mode field within the wavelength range from 1.46 to 2.2 μm, where only one polarized mode exists effectively, and the mode field area is about 79 μm(2) at the wavelength of 1.55 μm, matching that of the conventional single-mode fiber.  相似文献   

2.
Propagation and mode coupling within relatively short (~1-10?m) large core, nominally multimode, fibers are of interest in a number of applications. In this research, we have studied the output beam quality and mode coupling in various fibers with core diameters of 100-400?μm and lengths of 2?m. Output beam quality (M2) and mode-coupling coefficients (D) have been studied for different clad dimensions, numerical apertures, and wavelengths. The mode-coupling coefficients have been determined based on modal power diffusion considerations. The results show that D scales approximately as the inverse square of the clad dimension and inverse square root of the wavelength. Output from a 2?m length fiber of 100?μm core and 660?μm clad fiber is close to single mode (M2=1.6), while output from a 200?μm core and 745?μm clad fiber also has high beam quality.  相似文献   

3.
In this paper we present a simple and novel method to maximize on-axis coupling efficiency to radially symmetric fibers without the need for extra free space optical elements. The method is based on inserting a segment of step-index multimode fiber (MMF), cleaved to a particular length, between the input fiber and the output fiber (OF). The MMF segment modifies the input field to match the guided modes in the OF. Using this technique we show that, by inserting an appropriate length MMF segment, it is theoretically possible to obtain a coupling coefficient as high as ?0.8 dB between a single mode fiber and a graded index ring-shaped fiber and ?0.32 dB for a multi-shell fiber. Our experimental measurements showed good agreement with theoretical predictions for the ring fiber.  相似文献   

4.
A simple method is proposed for determining the mode coupling coefficient D in step-index multimode optical fibers. It only requires observation of the far-field output pattern for one fiber length with the input light launched centrally along the fiber axis (theta(0)=0). For illustration, the coupling coefficient determined by this simple method for a step-index plastic optical fiber was used to calculate the coupling length L(c) at which the equilibrium mode distribution is achieved, and length z(s) at which the steady-state distribution is achieved. Our results are in good agreement with experimental results reported earlier.  相似文献   

5.
Using the power-flow equation, we have examined the state of mode coupling in strained and unstrained step-index plastic optical fibers. The strained fibers show much stronger mode coupling than unstrained fibers of the same types. As a result, the coupling lengths where equilibrium mode distribution is achieved and the lengths of fiber required for achieving a steady-state mode distribution for strained fibers are much shorter than the corresponding lengths for unstrained fibers.  相似文献   

6.
The coupling coefficient in a strained step index plastic optical fiber is determined using our recent simplified method. This enabled the calculation of the length z(s) at which the steady-state distribution (SSD) is achieved. Results are in good agreement with measurements reported earlier. The strained fiber shows a much stronger mode coupling than the unstrained one of the same type. Consequently, the fiber length for achieving the SSD is much shorter for strained than unstrained fibers.  相似文献   

7.
Dragoman D  Meunier JP 《Applied optics》2001,40(26):4655-4660
We propose to determine the optical field in multimode circular fibers by using a one-step method that measures the Wigner distribution function of a section of the field in the fiber. This method allows an estimation not only of the power carried by each mode but also of the relative phases of different modes in the fiber. An additional measurement with the same setup can even determine the propagation constants of different modes. An example is provided, and the connection of this method of field recovery to the coupling coefficient between fibers and light sources is also discussed.  相似文献   

8.
Using the time-independent power-flow equation, we have examined the mode coupling caused by intrinsic perturbation effects of step-index plastic clad silica fiber carrying more than 10(5) modes. Result show that the equilibrium mode distribution for this fiber is achieved at a length of approximate 550 m, which is longer than reported previously. While this coupling length is much longer than that of plastic optical fibers, it is sorter than that of all-glass fibers.  相似文献   

9.
Gafsi R  Lecoy P  Malki A 《Applied optics》1998,37(16):3417-3425
A stress optical fiber sensor was manufactured and tested. It uses light coupling between two parallel and laterally fused, all-silica multimode optical fibers along a cladding length of a few centimeters. This sensor is dedicated to the measurement of high values of stress. A theoretical model was developed using the mode coupling and the perturbation theory to calculate the global coupling coefficient of light. A serial optical fiber sensor network interrogated by the time-division multiplexing method was realized and tested. The major applications of this sensor are control and monitoring of civil engineering structures and concretes.  相似文献   

10.
We numerically calculate the coupling loss coefficients of Laser Diode (LD) to high numerical aperture (HNA) thermally expanded core (TEC) fiber coupling in terms of lateral, longitudinal and angular misalignments. The propagating fields in the HNA-TEC fiber are obtained by Galerkin’s method and the coupling loss coefficients are calculated by the overlap integral technique. Our numerical results are compared with recently available experimental data. It is demonstrated that, in HNA-TEC fibers the lateral and longitudinal tolerances were effectively enlarged in comparison with those of conventional SMF-28. It is also found that TEC fibers are good candidates for free-space LD-to-fiber optical coupling scheme with long working distance. However, the angular tolerance of the HNA-TEC fiber is lower than that of the SMF-28.  相似文献   

11.
The first-order paraxial approximation is used to obtain the distributions of the electric and magnetic fields for the core and cladding hybrid fiber modes. The coupling coefficients of these modes are found for fibers subject to twist. The longitudinal electric field component determines the mode coupling in twisted fibers. It is shown that in the first-order paraxial approximation the cladding hybrid modes propagating in a twisted fiber rotate along the direction of the twist at the same rate as the core mode, independently of the azimuthal and radial mode numbers. Four hybrid modes constituting one linearly polarized mode have different longitudinal components, and the corresponding cladding-mode resonances of a long-period fiber grating undergo different shifts owing to different mode self-coupling coefficients. This results in the removal of mode degeneracy and splitting of resonances of long-period gratings in twisted fibers.  相似文献   

12.
The transport and deposition of aerosol particles through a fibrous filter is encountered in many natural and industrial processes. As the filtration performance for a stationary filter has been extensively studied in the literature, the present work focuses on the effect of fiber oscillation in a filter where the fibers are allowed to vibrate periodically. The transport and deposition of dilute aerosol particles in such a system is simulated using an efficient numerical model, where an iterative immersed-boundary lattice Boltzmann method is applied to solve the background flow with finite-size moving fibers, and the motion of aerosol particles is then tracked by a one-way coupling Lagrangian approach. In the present scheme, the no-slip boundary condition at the fiber surface can be exactly enforced with an iterative approach and the numerical stability is improved by adopting the MRT collision model. After the model validation in the two special cases of flow over an oscillating fiber in a quiescent fluid and particle capture by a stationary fiber, the filtration performance of an oscillating multi-fiber filter is investigated to study the effects of fiber number, arrangement and vibration mode. It is found that the oscillating motion of fiber has significant influence on the filtration performance. For a single fiber, with larger oscillation amplitude, the distribution ranges of the release position and impact angle of captured particles both increase. On the other hand, a larger fiber oscillation frequency tends to reduce the width of release position but increase the width of impact angle of deposited particles. Furthermore, the collection efficiency is found to be linearly related to the oscillation amplitude or frequency. For multiple fibers, the collection efficiency always increases with larger fiber number, but it is a non-monotonic function of the arrangement parameters, i.e., the longitudinal and transverse spacings, and the vibration parameters such as the amplitude, frequency and vibration mode. It is interesting to find that the in-phase mode can usually lead to excellent collection efficiency.  相似文献   

13.
We numerically calculate the coupling loss coefficients of Laser Diode (LD) to high numerical aperture (HNA) thermally expanded core (TEC) fiber coupling in terms of lateral, longitudinal and angular misalignments. The propagating fields in the HNA-TEC fiber are obtained by Galerkin’s method and the coupling loss coefficients are calculated by the overlap integral technique. Our numerical results are compared with recently available experimental data. It is demonstrated that, in HNA-TEC fibers the lateral and longitudinal tolerances were effectively enlarged in comparison with those of conventional SMF-28. It is also found that TEC fibers are good candidates for free-space LD-to-fiber optical coupling scheme with long working distance. However, the angular tolerance of the HNA-TEC fiber is lower than that of the SMF-28.  相似文献   

14.
Dong L  Ortega B  Reekie L 《Applied optics》1998,37(22):5099-5105
We have studied both theoretically and experimentally the effect of grating tilting on the coupling between the fundamental core mode and the cladding modes in an optical fiber Bragg grating. The coupling is shown to be very sensitive on the tilting angle. It is also shown that tilting angle has to be minimized in fibers with designs to suppress the coupling between the fundamental core mode and the cladding modes. We have also studied the single, strong loss peak accompanying the Bragg reflection peak in depressed-cladding fibers, thus showing a good agreement between behavior that is measured and that is predicted theoretically.  相似文献   

15.
Yevick D  Stoltz B 《Applied optics》1983,22(7):1010-1015
A computer program has been developed to study the total pulse response of optical fibers with profile ripple and central index depressions in the presence of arbitrary mode coupling. We have found that the magnitude of the compression of the total pulse response generated by mode coupling depends significantly on the details of the refractive-index profile of the test fiber.  相似文献   

16.
The asymmetry of the UV-induced refractive-index profile in photosensitive optical fibers causes a deformation of the modal fields, resulting in transition losses between UV-exposed and unexposed fiber sections up to 0.1 dB for UV-induced index changes of the order of 相似文献   

17.
Using the power flow equation, the state of mode coupling in 100-400 μm core step-index silica optical fibers is investigated in this article. Results show the coupling length L(c) at which the equilibrium mode distribution is achieved and the length z(s) of the fiber required for achieving the steady-state mode distribution. Functional dependences of these lengths on the core radius and wavelength are also given. Results agree well with those obtained using a long-established calculation method. Since large core silica optical fibers are used at short distances (usually at lengths of up to 10 m), the light they transmit is at the stage of coupling that is far from the equilibrium and steady-state mode distributions.  相似文献   

18.
The effect of single-wall carbon nanotubes (SWNTs) on nonlinear optical absorption of D-shaped fibers with versatile the remaining length of the cladding region and the interaction length are investigated. The optical absorption based on SWNTs is induced by the energy bandgap in SWNTs. The bandgap energy depends on the tube diameter of SWNTs. After fabricating versatile D-shaped fiber, SWNTs are deposited on the polished surface of D-shaped fibers. The cladding region of single mode fibers is removed by a side-polishing technique and the D-shaped fiber is obtained. In the D-shaped fiber, the cladding region is thin enough to induce the evanescent field coupling of core mode to the other modes of the SWNT-overlay. The nonlinear absorption based on the SWNTs-overlay is changed by the remaining length of cladding region and the interaction length because the coupling strength of evanescent field strongly depends on the different remaining lengths of the cladding region and the interaction lengths as well.  相似文献   

19.
The dynamics of individual flexible fibers in a turbulent flow field have been analyzed, varying their initial position, density and length. A particle-level fiber model has been integrated into a general-purpose, open source computational fluid dynamics code. The fibers are modeled as chains of cylindrical segments connected by ball and socket joints. The equations of motion of the fibers contain the inertia of the segments, the contributions from hydrodynamic forces and torques, and the connectivity forces at the joints. Direct numerical simulation of the incompressible Navier–Stokes equations is used to describe the fluid flow in a plane channel, and a one-way coupling is considered between the fibers and the fluid phase. We investigate the translational motion of fibers by considering the mean square displacement of their trajectories. We find that the fiber motion is primarily governed by velocity correlations of the flow fluctuations. In addition, we show that there is a clear tendency of the thread-like fibers to evolve into complex geometrical configurations in a turbulent flow field, in fashion similar to random conformations of polymer strands subjected to thermal fluctuations in a suspension. Finally, we show that fiber inertia has a significant impact on reorientation timescales of fibers suspended in a turbulent flow field.  相似文献   

20.
We examine signal degradation effects in fiber arrays from fiber-to-fiber coupling and from cross talk attributable to backscatter from the sample medium originating from adjacent fibers in the array. An analysis of coupling and cross talk for single-mode fibers (SMFs) operating at 1310 nm with different core diameters, interaction lengths, core center spacing, and numerical apertures (NAs) is evaluated. The coupling was evaluated using beam propagation algorithms and cross talk was analyzed by using Monte Carlo methods. Several multimode fiber types that are currently used in fiber image guides were also evaluated for comparative purposes. The analysis shows that an optimum NA and core diameter can be found for a specific fiber center separation that maximizes the directly backscattered signal relative to the cross talk. The coupling between fibers can be kept less than -35 dB for interaction lengths less than 5 mm. The calculations were compared to an experimentally fabricated SMF array with 15 microm center spacing and showed good agreement. The experimental fiber array without a lens was also used in a coherent detection configuration to measure the position of a mirror. Accurate depth ranging up to a distance of 250 microm from the tip of the fiber was achieved, which was five times the Rayleigh range of the beam emitted from the fiber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号