共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
通过分析谱图小波变换在平面图像、三维实体分析中的应用,提出一种用于一维数字信号分析的谱图小波阈值降噪方法。该方法将一维数字信号定义到路图上,利用谱图小波变换将其分解成尺度系数和谱图小波系数,对谱图小波系数进行阈值过滤处理,再进行谱图小波逆变换得到降噪信号。首先,利用四种典型仿真信号进行降噪试验,并分析不同分解层数对降噪性能的影响;接着,将其与经典小波阈值降噪方法进行仿真对比;最后,采用该方法进行滚刀主轴振动信号降噪,并与经典小波阈值降噪方法对比。仿真及试验结果表明,该方法实现了一维数字信号的快速非迭代降噪,且降噪信号平滑度高、畸变小,优于经典小波阈值降噪方法。 相似文献
3.
HHT在Lamb波检测信号分析中的应用 总被引:1,自引:0,他引:1
将一种新的超声信号处理技术用于Lamb波波形中多个模式到达时间的提取。通过将希尔伯特-黄变换(Hilbert-Huang transform,简称HHT)与快速傅里叶变换(fast Fourier transform,简称FFT)、小波变换(wavelettransform,简称WT)在时频分辨率方面的比较,表明HHT能够精确识别信号中两种频率分量突变的时刻,显示了HHT方法的优越性。将HHT方法的特性用于Lamb波模式到达时间的提取,从HHT的能量-时间图上可以看出,能量峰值时刻对应着各Lamb波模式的到达时间。试验结果与理论值具有较好的一致性。 相似文献
4.
在强噪声背景下难以提取出滚动轴承的故障特征,导致对轴承的故障诊断准确率不高,针对这一问题,提出了一种基于小波变换、改进奇异值分解多级降噪算法与支持向量机模型的轴承故障诊断方法。首先,采用小波降噪对滚动轴承的原始信号进行了初始降噪,消除了部分的随机噪声;然后,主要通过改进相空间矩阵重构方式,对该信号进行了改进奇异值分解二次降噪,并提出了新的奇异值有效秩阶次确定方法,利用峭度对一维信号提取方案进行了优化,并对其完成了降噪;最后,通过提取了10个有效特征,结合支持向量机在MATLAB中进行了仿真实验,分析了不同特征对轴承的故障诊断结果的影响,并将方法与其他方法进行了对比分析。研究结果表明:采用多级降噪算法降低了轴承工作状态下的背景噪声,使其故障特征频率更为明显;支持向量机分类诊断器的故障识别准确率达到98.3%,能够有效地识别轴承故障发生的位置和严重程度。 相似文献
5.
为研究弹载部件在导弹发射过程中的冲击响应及冲击信号的传递特性,进行了基于希尔伯特-黄变换(Hilbert-Huang transform,简称HHT)的导弹发射冲击时频谱分析。由于经验模态分解(empirical mode decomposition,简称EMD)结果易受白噪声的影响,研究了总体经验模态分解(ensemble empirical mode decomposition,简称EEMD)技术。以弹体不同位置的实测冲击信号为对象,应用HHT技术进行分析,准确得到了导弹发射冲击信号的固有模态函数(intrinsic mode function,简称IMF)和时间-频率-能量谱特征,并研究了两次冲击的频率分布和各阶IMF与原始信号的相关性。结合边际谱分析对比了两个舱段能量在中低频和高频的传递特性,进一步验证了HHT方法在分析非线性和非平稳冲击信号中的优越性。 相似文献
6.
时频谱重分配能有效提高时频谱的时频聚集性,减少干扰项。当振动信号中存在着能量较大噪声时,重分配时频谱会受到噪声干扰影响,降低时频分布的可读性。将重分配魏格纳时频谱(RWVDS)和奇异值分解(SVD)结合形成一种新的机械故障诊断方法。利用重分配算法对魏格纳时频谱进行重分配,提高魏格纳时频谱的时频聚集性,再对重分配时频谱进行SVD降噪,降低了噪声干扰影响,提高其时频分布的可读性。该方法对仿真信号、滚动轴承及齿轮箱故障信号进行了分析,并与其他几种方法作了比较。结果表明,该方法时频聚集性好,抗噪能力强,能有效识别强噪声背景下的机械故障特征。 相似文献
7.
μ-SVD降噪算法及其在齿轮故障诊断中的应用 总被引:5,自引:0,他引:5
为了提取机械设备被强背景噪声淹没的故障特征,采用一种具有通用意义的基于奇异值分解(Singular value decomposition,SVD)的子空间降噪算法对信号进行处理,即?-SVD降噪算法。传统的SVD降噪算法是?-SVD降噪算法中拉格朗日乘子??0时的一种特殊情况。?-SVD降噪算法包含滤值因子,能够抑制以噪声贡献占主导的奇异值对降噪后信号的信息贡献量。?-SVD降噪算法涉及延迟时间、嵌入维数、降噪阶次、噪声功率和拉格朗日乘子等5个参数。讨论了?-SVD降噪算法的参数选择方法,并着重研究降噪阶次和拉格朗日乘子对降噪效果的影响。齿轮故障仿真信号和齿轮早期裂纹故障振动信号的试验结果表明,?-SVD降噪算法在降噪效果方面要优于传统的SVD降噪算法,可以在强背景噪声情况下更好地提取出齿轮的故障特征。 相似文献
8.
针对滚动轴承振动信号降噪时,克服模式混叠、保证各频率成分完整性和独立性问题,提出最大类间方差-经验小波变换分解(maximum between-cluster variance-empirical wavelet transform,简称MBCV-EWT)与奇异值差分谱相结合的信号降噪方法。首先,针对传统区间划分的不确定性问题,提出MBCV-EWT信号分解方法,通过最大类间方差对信号频谱自适应划分,并在每个划分区间上构建带通滤波器;其次,针对分解分量冗余,提出脉冲指标作为调幅-调频分量筛选准则,选取最优的分量用于降噪;最后,对最优调幅-调频分量进行奇异值分解,根据其差分谱重构分量并实现降噪。仿真及实验结果表明,该方法能够实现频谱自适应划分,有效克服模式混叠等问题,保证分解得到的各成分主频独立且完整,调幅-调频分量筛选准确,降噪效果明显,为故障识别和预测奠定研究基础。 相似文献
9.
应用希尔伯特黄变换方法(Hilbert-Huang transform,简称HHT)对车辆-轨道系统中高低不平顺与车辆垂向振动加速度关系进行分析。首先,利用经验模态分解法(empirical mode decomposition,简称EMD)对实测的高低不平顺与车辆垂向振动加速度信号进行分解,得到两者的本征模函数;然后,通过比较分析两者本征模函数的时域波形与Hilbert能量谱,说明高低不平顺本征模函数与车辆垂向振动加速度本征模函数之间的确定性的对应关系,可以利用车辆垂向振动加速度来识别轨道高低不平顺的不良区段;最后,对京广提速干线铁路轨检车实测样本进行回归分析,得到在波长为1.5~50m范围内直线和曲线段高低不平顺与车辆垂向振动加速度的定量关系。 相似文献
10.
针对小波阈值和奇异值分解降噪法的不足,研究一种新的小波阈值函数。提出一种基于改进阈值的奇异值小波降噪方法,该方法利用奇异值分解技术,将噪声非均匀分布的信号正交分解为噪声分布相对均匀的分量,并对每个分量进行小波阈值降噪,重构降噪后的分量,得到降噪信号。仿真实例证明,该方法与小波软、硬阈值及改进阈值法相比,不仅提高信噪比,而且能够更好地消除高斯噪声。利用该方法对柱塞泵不同状态振动信号进行降噪,结果表明,该方法能有效抑制噪声,为柱塞泵振动信号预处理提供一种更为有效的方法。 相似文献
11.
Varela P Silva A da Silva F da Graça S Manso ME Conway GD;ASDEX Upgrade Team 《The Review of scientific instruments》2010,81(10):10D925
The spectrogram is one of the best-known time-frequency distributions suitable to analyze signals whose energy varies both in time and frequency. In reflectometry, it has been used to obtain the frequency content of FM-CW signals for density profile inversion and also to study plasma density fluctuations from swept and fixed frequency data. Being implemented via the short-time Fourier transform, the spectrogram is limited in resolution, and for that reason several methods have been developed to overcome this problem. Among those, we focus on the reassigned spectrogram technique that is both easily automated and computationally efficient requiring only the calculation of two additional spectrograms. In each time-frequency window, the technique reallocates the spectrogram coordinates to the region that most contributes to the signal energy. The application to ASDEX Upgrade reflectometry data results in better energy concentration and improved localization of the spectral content of the reflected signals. When combined with the automatic (data driven) window length spectrogram, this technique provides improved profile accuracy, in particular, in regions where frequency content varies most rapidly such as the edge pedestal shoulder. 相似文献
12.
13.
14.
简要介绍了油封在烟气轮机中的作用,详细阐述了油封设计和加工制造中的不足,给出了油封的改进设计,并对新的工艺路线作了概括说明。 相似文献
15.
16.
重油催化裂化能量回收三机组由于烟气质量和冷却蒸汽系统出现异常,导致催化剂在烟气轮机叶片上大量聚集结垢,最终引起烟机较大振动。通过及时监测、分析和处理,最后成功排除故障。 相似文献
17.
Jiao Jing-pin Fei Ren-yuan He Cun-fu Wu Bin 《Frontiers of Mechanical Engineering in China》2006,1(2):146-150
It is important to analyze the propagation characteristics of guided waves in acoustic leak location in pipelines. In this
paper, the acoustic leak signal is analyzed in the time-frequency domain. Based on the relation of time-frequency distribution
of the acoustic leak signal and the dispersion curves of guided waves, the mode components of acoustic leak signals were obtained.
The research can provide a guideline for the mode selection in pipeline leak location, and help improve the accuracy of leak
location. 相似文献
18.
SVM在混合气体光谱分析中的应用 总被引:5,自引:0,他引:5
针对混合气体多维光谱定性和定量分析中组分气体吸收谱线重叠、定性和定量分析无法使用同一方法、训练样本数目有限及输入光谱的维数等难题,将支持向量机应用于混合气体多维光谱分析中,利用核函数将重叠的多维光谱数据进行高维空间变换后求得SVM回归模型,可同时进行混合气体组分浓度的定量分析和组分种类的定性分析.在混合气体为天然气的组分浓度和组分种类分析实验中,组分浓度的最大误差为1.74%;组分种类的识别准确率大于94.87%,效果明显优于其他方法,为混合气体多维光谱分析提供了新的方法. 相似文献
19.
Hilbert-Huang transformation-based time-frequency analysis methods in biomedical signal applications
Lin CF Zhu JD 《Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine》2012,226(3):208-216
Hilbert-Huang transformation, wavelet transformation, and Fourier transformation are the principal time-frequency analysis methods. These transformations can be used to discuss the frequency characteristics of linear and stationary signals, the time-frequency features of linear and non-stationary signals, the time-frequency features of non-linear and non-stationary signals, respectively. The Hilbert-Huang transformation is a combination of empirical mode decomposition and Hilbert spectral analysis. The empirical mode decomposition uses the characteristics of signals to adaptively decompose them to several intrinsic mode functions. Hilbert transforms are then used to transform the intrinsic mode functions into instantaneous frequencies, to obtain the signal's time-frequency-energy distributions and features. Hilbert-Huang transformation-based time-frequency analysis can be applied to natural physical signals such as earthquake waves, winds, ocean acoustic signals, mechanical diagnosis signals, and biomedical signals. In previous studies, we examined Hilbert-Huang transformation-based time-frequency analysis of the electroencephalogram FPI signals of clinical alcoholics, and 'sharp I' wave-based Hilbert-Huang transformation time-frequency features. In this paper, we discuss the application of Hilbert-Huang transformation-based time-frequency analysis to biomedical signals, such as electroencephalogram, electrocardiogram signals, electrogastrogram recordings, and speech signals. 相似文献
20.