首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 699 毫秒
1.
Imaging interferometric nanoscopy (IIN) is a synthetic aperture approach offering the potential of optical resolution to the linear-system limit of optics (~λ/4n). The immersion advantages of IIN can be realized if the object is in close proximity to a solid-immersion medium with illumination and collection through the substrate and coupling this radiation to air by a grating on the medium surface opposite the object. The spatial resolution as a function of the medium thickness and refractive index as well as the field-of-view of the objective optical system is derived and applied to simulations.  相似文献   

2.
An optical setup to achieve superresolution in microscopy using holographic recording is presented. The technique is based on off-axis illumination of the object and a simple optical image processing stage after the imaging system for the interferometric recording process. The superresolution effect can be obtained either in one step by combining a spatial multiplexing process and an incoherent addition of different holograms or it can be implemented sequentially. Each hologram holds the information of each different frequency bandpass of the object spectrum. We have optically implemented the approach for a low-numerical-aperture commercial microscope objective. The system is simple and robust because the holographic interferometric recording setup is done after the imaging lens.  相似文献   

3.
Harvey JE 《Applied optics》1995,34(19):3715-3726
Residual surface roughness over the entire range of relevant spatial frequencies must be specified and controlled in many high-performance optical systems. This is particularly true for enhanced reflectance multilayers if both high reflectance and high spatial resolution are desired. If we assume that the interfaces making up a multilayer coating are uncorrelated at high spatial frequencies (microroughness) and perfectly correlated at low spatial and midspatial frequencies, then the multilayer can be thought of as a surface power spectral density (PSD) filter function. Multilayer coatings thus behave as a low-pass spatial frequency filter acting on the substrate PSD, with the exact location and shape of this cutoff being material and process dependent. This concept allows us to apply conventional linear systems techniques to the evaluation of image quality and to the derivation of optical fabrication tolerances for applications utilizing enhanced reflectance x-ray multilayers.  相似文献   

4.
Digital speckle correlation is based on a detailed analysis of changes in speckle images that are recorded from laser-illuminated rough surfaces. The two in-plane components are obtained by cross-correlation of corresponding subimages, a method also known as digital speckle photography. The local gradient of the hitherto inaccessible out-of-plane component is determined from the characteristic dependence of the speckle correlation on the spatial frequency. A detailed experimental study is carried out to analyze the new technique for systematic and random measuring errors. For moderate decorrelation the accuracy of the out-of-plane measurement is better than lambda/10 and thus comparable with interferometric techniques. Yet the extremely simple and robust optical setup is suited to nondestructive-testing applications in harsh environments. The quality of the deformation maps is demonstrated in a practical application.  相似文献   

5.
An on-line computer system for measuring the deformation of a diffuse object with a speckle interferometer is presented. Methods for evaluating a speckle interferogram using digital image processing techniques are also discussed. The system consists of an interferometric optical setup and a computer-TV image processing facility. A speckle interferogram is generated arithmetically between two digitized speckle patterns before and after deformation of the object. The information about the deformation is extracted by two procedures in analyzing the interferogram: (a) automatic analysis using digital image processing techniques such as gray scale modification, linear spatial filtering, thresholding, and skeletoning; (b) man-machine interactive method for simple high-speed processing of the interferogram using a light pen. The determined fringe order numbers are interpolated and differentiated spatially to give strain, slope, and bending moment of the deformed object. Some examples of processed patterns are presented.  相似文献   

6.
We have studied the possibility of creating a new type of the interferometric near-field pinhole probe for near-field optical microscopy systems based on a Fabry-Perot fiber microresonator with a nanodimensional pinhole in one of its output mirrors. The dependence of the resonance wavelength shift in the Fabry-Perot interferometer on the distance from the output diaphragm to the object has been determined using the finite-difference method in the time domain. It is shown that the proposed technique ensures a spatial resolution of no worse than λ/15.  相似文献   

7.
It is shown that the spatial frequencies recorded in interferometric synthetic aperture microscopy do not correspond to exact backscattering [as they do in unistatic synthetic aperture radar (SAR)] and that the reconstruction process based on SAR is therefore based on an approximation. The spatial frequency response is developed based on the three-dimensional coherent transfer function approach and compared with that in optical coherence tomography and digital holographic microscopy.  相似文献   

8.
Spatial compounding reduces speckle and increases image contrast by incoherently averaging images acquired at different viewing angles. Adaptive imaging improves contrast and resolution by compensating for tissue-induced phase errors. Aberrator strength and spatial frequency content markedly impact the desirable operating characteristics and performance of these methods for improving image quality. Adaptive imaging, receive-spatial compounding, and a combination of these two methods are presented in contrast and resolution tasks under various aberration characteristics. All three imaging methods yield increases in the contrast-to-noise ratio (CNR) of anechoic cysts; however, the improvements vary depending on the properties of the aberrating layer. Phase correction restores image spatial frequencies, and the addition of compounding opposes the restoration of image spatial frequencies. Lesion signal-to-noise ratio (SNR), an image quality metric for predicting lesion detectability, shows that combining spatial compounding with phase correction yields the maximum detectability when the aberrator strength or spatial frequency content is high. Examples of these modes are presented in thyroid tissue.  相似文献   

9.
A method for the remote comparison of objects with regard to their shape or response to a load is presented. The method allows interferometric sensitivity for comparing objects with different microstructure. In contrast to the well-known incoherent techniques based on inverse fringe projection this new approach uses the coherent optical wave field of the master object as a mask for the illumination of the sample object. The coherent mask is created by digital holography to allow instant access to the complete optical information of the master object at any place desired. The mask is reconstructed by a spatial light modulator (SLM). The optical reconstruction of digital holograms with SLM technology allows modification of reconstructed wavefronts with respect to improvement of image quality, the skilled introduction of additional information about the object (augmented reality), and the alignment of the master and test object.  相似文献   

10.
We analyze the optical resolution of Fourier transform spectral interferometric-coherent anti-Stokes Raman scattering microscopy, which extracts the complex amplitude of an image by using a spectral interferometric effect. Image-formation formulas are presented that describe the properties of the image observed by the apparatus. The image-formation properties represented by the coherent transfer function are different depending on the mode (transmission, reflection, etc.) of the microscopy.  相似文献   

11.
采用双向偏置曝光的成像干涉光刻技术   总被引:1,自引:1,他引:0  
成像干涉光刻技术(IIL)具有干涉光刻技术(IL)的高分辨力和光学光刻技术(OL)产生任意形状集成电路特征图形的能力。在IIL中,按掩模图形的不同空间频率成份分区曝光,并使其在抗蚀剂基片上非相干叠加,得到高分辨抗蚀剂图形。本文在研究一般三次曝光IIL原理基础上,提出采用沿X轴正、负方向以及沿Y轴正、负方向偏置的双向偏置照明,分别曝光 X方向、-X方向、 Y方向、-Y方向的高空间频率分量并与垂直于掩模方向的低空间频率分量曝光相结合的五次曝光IIL。理论和计算模拟表明,该方法可以提高图形对比度和分辨力,并减小因调焦误差引起的图形横向位移误差,有利于改善抗蚀剂图形质量。  相似文献   

12.
Canton A  Innocente P  Tudisco O 《Applied optics》2006,45(36):9105-9114
A scanning beam interferometer installed on the Frascati tokamak upgrade (FTU) experiment is presented. The scanning beam scheme combined with the small dimensions of the beams produces a system with very high spatial resolution: more than 30 adjacent (nonoverlapping) chords sample most of the plasma cross section. A good time resolution is achieved by the use of a proper scanning device, with a scanning frequency >or=8 kHz. Very fast events are measured by three additional fixed lines of sight providing a time resolution >or=100 kHz. The instrument is a two-color medium-infrared-compensated-type interferometer; two wavelengths (colors) are used to measure both the density and the mechanical vibrations of optical components. A CO2 laser (lambda=10.6 microm) is the main light source, and a CO laser (lambda=5.4 microm) is the compensation one. The optical scheme is a double pass Mach-Zehnder type. All the retroreflector mirrors are mounted directly on the FTU mechanical structure thanks to the compensation system that allows for large vibration amplitudes of optical components. Heterodyne detection at 30 and 40 MHz is obtained by frequency shifting the reference beams with two acousto-optic modulators (Bragg cells). Many features are implemented to achieve high measurement accuracy and reliability. A real-time system computes the integral density measured on one of the fixed lines of sight and provides an analog signal for density feedback control. The interferometer was used to measure density profiles both in medium-density discharges (n(e) approximately 10(20) m(-3)) and in high-density pellet injected discharges (n(e) approximately 7-8 x 10(20) m(-3)). The measurement error is approximately 2 x 10(18) m(-2) under optimal conditions but can be higher in some cases, mainly because of the large tilt of the retroreflector mirrors.  相似文献   

13.
Lane PM  Cada M 《Applied optics》2000,39(35):6573-6586
A novel interferometric optical Fourier-transform processor is presented that calculates the complex-valued Fourier transform of an image at preselected points on the spatial-frequency plane. The Fourier spectrum of an arbitrary input image is interfered with that of a reference image in a common-path interferometer. Both the real and the imaginary parts of the complex-valued spectrum are determined. The source and the reference images are easily matched to guarantee good fringe visibility. At least six interferograms are postprocessed to extract the real and the imaginary parts of the Fourier spectrum at preselected points. The proposed hybrid optical-digital technique is computationally appropriate when the number of desired spatial frequencies is small compared with the number of pixels in the image. When the number of desired points is comparable with the number of image pixels, a conventional or pruned two-dimensional fast Fourier transform is more appropriate. The number of digital operations required by the hybrid optical-digital Fourier processor is proportional to the number of desired spatial frequencies rather than the number of pixels in the image. The points may be regularly distributed over the spatial-frequency plane or concentrated in one or several irregularly shaped regions of interest. The interferometric optical Fourier processor is demonstrated in a moving-object trajectory estimation system. The system successfully estimates the trajectory of multiple objects moving over both stationary and white-noise backgrounds. A comparison of performance was made with all-digital computation. With everything else equal, our hybrid optical-digital calculation was more than 3 orders of magnitude faster.  相似文献   

14.
Weiss V  Peled A  Friesem AA 《Applied optics》1994,33(22):4988-4992
Surface photodeposition is a photon-assisted process by which thin films are formed on substrates immersed in colloid solutions. We experimentally evaluate the resolution capabilities of the photodeposition process with amorphous selenium colloids by recording holographic gratings at different spatial frequencies, up to 2200 lines/mm. The experimental diffraction efficiencies are analyzed in terms of a theoretical model, which relates the spatial-frequency response to optical recording parameters and colloid particle sizes. The maximal experimental diffraction efficiency reaches 13% with a spatial frequency of f = 1100 lines/mm. The diffraction efficiencies decrease monotonically with spatial frequency, and drop to half of the maximal diffraction efficiency at f ≈ 1500 lines/mm. These resolution capabilities are achieved with colloid particle sizes extending up to 80 nm. The theoretical derivation indicates that to obtain spatial frequencies above 3000 lines/mm, one should restrict the colloid particle size to a(max) ≤ 30 nm.  相似文献   

15.
This paper presents an active optical low-pass filter (AOLPF) capable of changing the resolution of an imaging system on demand in order to remove aliasing noise from a sampling image. This is advantageous over conventional optical low-pass filters, which are fixed image-blurring optical components that are built into the imaging system, in order to remove aliasing in the image. Furthermore, conventional filters smear images regardless of the presence or lack of high spatial frequency, which can exceed the Nyquist limit of the sensor. On the contrary, the proposed AOLPF can dynamically adjust the modulation transfer function of an imaging system to eliminate aliasing artifacts. In addition, this filter can be turned off in the absence of high spatial frequency to maximize resolution and prevent unnecessary blurring of the sampling image.  相似文献   

16.
Compared to the usual water immersion case, more effective transmission and reception of high-frequency ultrasound through a thin, solid layer are reported. A theoretical model is presented to perform the signal amplification and the signal modulation toward the higher frequency components for getting the high-quality acoustic images without immersing the object to be imaged. Also, the thin, solid layers are designed from the theoretical model, and the transmission of high-frequency ultrasound is carried out through the layer/silicon interfaces with an applied pressure of about 0.1 MPa. The spectral intensity in the frequency range of 20 to 70 MHz remarkably improves compared with water immersion, and the peak frequencies of the spectra modulate the higher than water immersion. Furthermore, the solder joint inspection of a package is performed. The present dry-contact technique achieves the higher spatial resolution and the higher signal-to-noise ratio (SNR) than the usual water immersion technique, and clearly detects the defective joint without getting the package wet.  相似文献   

17.
It has long been known that image plane holography with low-coherence illumination achieves optical sectioning of a volume object. A method is analyzed that is similar to image plane holography, but the interferometric arrangement utilizes the interference between two object-bearing beams instead of the basic object and reference beams.  相似文献   

18.
Wang Y  Zhao Z  Chen Z  Zhang L  Kang K  Deng J 《Applied optics》2011,50(35):6452-6460
Terahertz phase imaging can reveal the depth information of an optically opaque object and provide much better contrast for weak-absorption materials. We demonstrate a continuous-wave terahertz interferometric imaging method in which a far-infrared laser interferometer is used to measure the phase distribution with diffraction-limited lateral resolution and subwavelength axial resolution. An improved four-step phase-shifting algorithm is introduced to retrieve the phase map with very high accuracy and low distortion. The relative depth profiles of two transparent samples are successfully extracted by using this method. Experimental results verify that terahertz interferometric imaging in combination with the phase-shifting technique enables effective reconstruction of the phase image of the object under test.  相似文献   

19.
Yuan C  Situ G  Pedrini G  Ma J  Osten W 《Applied optics》2011,50(7):B6-11
Angular and polarization multiplexing techniques are utilized in both object and reference arms in the digital holographic microscopy system to improve its resolution. The angular multiplexing provides on-axis and off-axis illumination and reference beams with different carrier frequencies. Polarization multiplexing prohibits the occurrence of interference between low and high object spatial frequencies and reference beams. The proposed system does not require special light sources or filtering masks. Experimental results show that the resolution of the synthesized image exceeds the resolution determined by the numerical aperture of the imaging microscope objective.  相似文献   

20.
The frequency content of a photographic image can be considerably modified by using a suitable optical system. The Fraunhofer diffraction pattern (the Fourier transform) of a transparency is produced by using parallel light from a laser. This spatial frequency spectrum can be differentially filtered to produce a reconstructed image of arbitrary frequency content. The radiographic image is a convolution of the X-ray source with the object under examination. The filtering operation lessens the degrading effect of penumbra by means of a deconvolution with a filter that is representative of the Fourier transform of the X-ray source.

Manufacture of the spatial filter is described and results showing enhancement of detail in radiographs by reduction of penumbra are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号