首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
基于PSO-WSVR的短期水质预测模型研究   总被引:2,自引:0,他引:2  
针对传统方法很难建立精确的非线性水质预测模型的情况,提出了基于粒子群优化加权支持向量回归机(PSO-WSVR)的水质短期预测模型.在建模过程中,根据各样本重要性的差异,给各个样本的惩罚系数赋予不同权重,改进了标准支持向量回归机算法,克服了标准支持向量回归算法因不同样本均采用相同权重造成预测精度低的问题,并采用粒子群优化算法对加权支持向量回归机参数组合进行自适应优化,模型收敛速度明显加快.运用PSO-WSVR模型对江苏宜兴市集约化河蟹养殖池塘水质进行预测,与标准支持向量回归机和BP神经网络对比分析.结果表明,该模型性能可靠、泛化能力强,预测精度高,为集约化水产养殖水质短期预测提供了一种新思路.  相似文献   

2.
为解决水沙变化机理中水库泥沙难以预测的问题,采用支持向量回归(support vector regression, SVR)、遗传算法-支持向量回归(genetic algorithm-support vector regression, GA-SVR)、粒子群优化-支持向量回归(particle swarmoptimization-supportvectorregression,PSO-SVR)、最小二乘支持向量回归(leastsquaressupportvector regression, LSSVR)等模型进行研究,并将模型应用于黑孜水库水文站的年径流量及年输沙量序列的预测分析。数据资料序列划分为85%的训练数据和15%的测试数据,使用均方根误差、相关系数、平均绝对百分比误差、纳什系数这4项指标来评价模型的精度,得到的结果可以为水库的短期调度和长期管理提供帮助。结果表明:LSSVR算法是4种模型中最优的,其误差最小,精度最高;构建的模型可为其他地区的水沙预测提供参考。  相似文献   

3.
为解决传统方法水质预测精度低、鲁棒性差等问题,提出了基于小波分析(WA)、人工蜂群(ABC)优化加权最小二乘支持向量回归机(WLSSVR)的工厂化育苗溶解氧组合预测模型(WA-ABC-WLSSVR模型).该模型采用小波分析对原始非平稳溶解氧时间序列数据进行多尺度特征提取,通过加权最小二乘支持向量回归机对不同尺度下的溶解氧数据子序列分别建模,利用改进人工蜂群优化算法(ABC)对各分量序列WLSSVR模型参数进行组合优化,最后叠加各尺度下的预测结果.运用该模型对工厂化育苗溶解氧进行预测,并与BPNN、标准LSSVR、WAACO-LSSVR、WA-PSO-LSSVR等模型对比分析,结果表明,该溶解氧预测模型具有较高的预测精度和泛化能力.  相似文献   

4.
提出了一种基于自适应加权最小二乘支持向量机(AWLS-SVM)理论的电力系统短期负荷预测新方法。在对已知负荷数据及影响因素的分析学习基础上,先用自适应参数优化法整定最小二乘支持向量机的参数,确定最优参数对,然后针对各样本重要性的差异,赋予每个样本惩罚参数不同的加权系数,建立了具有良好推广性能的AWLS-SVM回归模型。本方法突出了不同样本在训练过程中贡献不同的特性,具有结构简单、泛化性能好、不易发生过拟合现象等优点。通过对真实数据的建模预测,证明了该法在短期负荷预测中的可行性和有效性。  相似文献   

5.
讨论了基于支持向量机的电力系统负荷预测模型建模方法.通过对模型结构的分析,提出了最小二乘支持向量机算法学习参数的选取方法.结合粒子群优化算法,给出了粒子群优化对最小二乘支持向量机系数优化选择的方法.采用某省的经济、人口、天气和电价等实证数据对几种预测方法进行比较分析,算例结果表明,所提出的方法可以加快计算速度,并有效提高预测精度.  相似文献   

6.
提出了一种基于自适应加权最小二乘支持向量机(AWLS-SVM)理论的电力系统短期负荷预测新方法。在对已知负荷数据及影响因素的分析学习基础上,先用自适应参数优化法整定最小二乘支持向量机的参数,确定最优参数对,然后针对各样本重要性的差异,赋予每个样本惩罚参数不同的加权系数,建立了具有良好推广性能的AWLS-SVM回归模型。本方法突出了不同样本在训练过程中贡献不同的特性,具有结构简单、泛化性能好、不易发生过拟合现象等优点。通过对真实数据的建模预测,证明了该法在短期负荷预测中的可行性和有效性。  相似文献   

7.
瓦斯涌出量受多种自然因素和开发技术的影响,是一个非线性、高维的问题.提出了改进的PSO算法与LSSVM算法相结合对瓦斯涌出量进行预测的新方法.实验结果表明,该模型预测精度更高,泛化能力更强.  相似文献   

8.
提出了一种基于小波变换和自适应加权最小二乘支持向量机(AWLS-SVM)的电力系统短期负荷预测方法。针对负荷变化具有拟周期性和随机性的特点,本方法先将负荷值利用小波变换分解为几个低频段的拟周期量和一个高频段随机量,然后根据各分量特点应用AWLS-SVM模型进行预测,最后小波重构各分量获得预测结果。实例预测结果表明该方法具有较高的预测精度。  相似文献   

9.
钢铁企业电力负荷作为电力负荷的重要组成部分,钢铁电力负荷的准确预测对于提高电力负荷预测精度具有重要意义。为了实现钢铁电力负荷的中长期预测,本文选取了经济因素和社会因素作为自变量,引入带有惯性权重的粒子群算法(WPSO)对传统的最小二乘支持向量机智能预测模型(LSSVM)参数进行优化,并利用某地区钢铁电力负荷样本数据进行验证,拟合结果显示,经过粒子群算法优化后的最小二乘智能向量机算法预测精度更高,收敛速度更快,具有良好的推广性和适应性。  相似文献   

10.
针对最小二乘支持向量机(LSSVM)失去稀疏特性及经典迭代剪切稀疏化算法容易陷入性能指标函数局部收敛的问题,提出一种基于粒子群优化(PSO)的LSSVM稀疏化算法.将LSSVM稀疏化过程描述为一个最优化问题,以校验样本和预测输出之间的均方根误差RMSE为优化目标,以模型训练样本剪切率ε(%)为优化变量.并针对此非线性优化问题提出基于PSO的求解方法.以大型电厂飞灰含碳量LSSVM模型为例,对此算法进行了实例研究.结果表明,该方法能有效解决经典算法的局部收敛问题获得最优剪切率,具有更好的预测和泛化能力.  相似文献   

11.
一种基于QPSO和WLS-SVM的智能方法   总被引:1,自引:0,他引:1  
提出一种基于量子粒子群优化算法(QPSO)和加权最小二乘支持向量机(WLS-SVM)的智能方法,以克服常用方法存在需要较大样本数据量、建模速度较慢差等缺点.方法的具体改进是,将SVM中单一核函数构造成混合核函数,增加自适应权重,采用QPSO算法求解WLS-SVM训练模型中的线性方程组,这样能提高模型的性能.经过典型的二型糖尿病诊断实验,结果表明其建模速度快、诊断准确率高,其效果优于改进BP算法神经网络、LM算法神经网络和单核函数的SVM等方法.  相似文献   

12.
为了提高最小二乘支持向量机(LSSVM)的学习性能和泛化能力,提出了混沌粒子群优化(CPSO)算法和交叉验证(CV)算法相结合的LSSVM参数寻优方法.CPSO算法将混沌搜索引入到粒子群算法中产生初始混沌粒子,并在粒子运动中不断加入混沌扰动,实现LSSVM参数的自动选取.利用交叉验证误差构造粒子的适应度函数,为参数选择提供评价标准.陀螺仪随机漂移是影响陀螺仪性能可靠性的主要因素,将经过参数寻优的LSSVM用于建立陀螺仪随机漂移的时间序列预测模型,预测值与实际值相差较小,可为陀螺仪的故障趋势预测提供依据.实验结果表明CPSO算法是选取LSSVM参数的有效方法,所建的回归模型具有较高的预测精度.  相似文献   

13.
针对目前常用的基于神经网络的库存预测方法存在收敛速度慢或不收敛、存在局部极小值、网络结构选择具有随机性且对小样本库存预测容易出现过学习现象等问题,提出了基于最小二乘支持向量机的企业库存预测算法。通过结合某公司的库存实际计算以及与其他预测方法进行比较,通过仿真试验和实际数据验证,该算法计算简单,且具有更好适应性和很好的鲁棒性等特点。  相似文献   

14.
15.
建筑周围气象参数的不确定性和持续波动性,为建筑系统动态负荷预测及实时优化控制带来困难。文章以最小二乘支持向量机(LSSVM)作为预测算法,运用粒子群优化算法(PSO)优化LSSVM模型参数,建立基于历史信息的多输入多输出(MIMO)建筑周围气象参数预测模型,对影响建筑负荷的室外温度、湿度及风速进行超短期预测。结果表明:PSO算法可对模型参数进行优化,基于PSO-LSSVM算法构建的建筑周围气象参数超短期预测模型能够实现未来140 min气象参数的预测,为建筑供能和用能系统动态优化运行提供数据。  相似文献   

16.
现有砂层可注性评价方法多为分类评价,且分类标准不一,不利于实际工程应用.为此,采用粒子群算法(PSO)对最小二乘支持向量机(LSSVM)进行优化,提出可注性量化预测模型.选取水泥浆液水灰比RWC、相对密实度Dr、细颗粒(直径<0.075 mm)含量θ、砂层特征粒径D10和D15为控制变量,开展129组可注性室内试验,以每组试验浆液扩散距离作为可注性量化评价指标.基于PSO-LSSVM方法建立砂层可注性与各控制变量间的关系模型,采用傅里叶幅度敏感性测试法(FAST)对可注性影响因素进行全局敏感性分析.结果表明:PSO-LSSVM模型具有较高的预测精度,砂层可注性模型预测值与试验值基本一致,拟合优度R2为0.982;各影响因素对可注性的敏感性排序为:D10>D15>Dr>θ>RWC,其中D10和D15敏感性显著高于Dr、θ和RWC.  相似文献   

17.
Slope stability estimation is an engineering problem that involves several parameters. To address these problems, a hybrid model based on the combination of support vector machine(SVM) and particle swarm optimization(PSO) is proposed in this study to improve the forecasting performance. PSO was employed in selecting the appropriate SVM parameters to enhance the forecasting accuracy. Several important parameters, including the magnitude of unit weight, cohesion, angle of internal friction, slope angle, height, pore water pressure coefficient, were used as the input parameters, while the status of slope was the output parameter. The results show that the PSO-SVM is a powerful computational tool that can be used to predict the slope stability.  相似文献   

18.
针对回采工作面瓦斯涌出量问题的小样本、非线性、影响因素关系复杂等特点,采用遗传-最小二乘支持向量回归算法对瓦斯涌出量进行预测,利用定量方法进行分析,避免了定性分析的局限性,有效提高了预测的精度。该模型首先利用遗传算法对最小二乘支持向量回归机中的参数进行训练和优化,然后运用遗传-最小二乘支持向量回归模型对测试样本进行了回采工作面瓦斯涌出量测试。测试结果表明:与支持向量回归机以及最小二乘支持向量回归机的预测值相比,遗传-最小二乘支持向量回归的回采工作面瓦斯涌出量预测可靠性和精确性更高。  相似文献   

19.
为解决最小二乘支持向量机的参数确定问题,提出采用自适应差分进化最小二乘支持向量机法预测日用水量.引入改进粗糙集算法分析日用水量主要影响因素,利用自相关系数法确定序列的相关性,并将自适应差分进化算法(SADE)用于优化最小二乘支持向量机(LSSVM)的参数,建立了基于SADELSSVM的预测模型.结果表明,与传统差分进化算法(DE)和自适应遗传算法(SAGA)相比,SADE具有更快的最优个体搜索速度和群体进化速度,与基于SAGALSSVM和基于DELSSVM的模型相比,本文提出模型的预测能力更强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号