首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements of cosmic radiation dose rates (from the neutron and the non-neutron components) on board passenger aircraft were performed using environmental packages with thermoluminescent TL and CR-39 etched track detectors. The packages were calibrated at the CERN-EU high-energy Reference Field Facility and evaluated at the Institute of Nuclear Physics in Krakow (TL + CR-39) and at the German Aerospace Centre in Cologne (CR-39). Detector packages were exposed on board passenger aircraft operated by LOT Polish Airlines, flown between February and May 2001. The values of effective dose rate determined, averaged over the measuring period, ranged between 2.9 and 4.4 microSv h(-1). The results of environmental measurements agreed to within 10% with values calculated from the CARI-6 code.  相似文献   

2.
This paper investigates the characteristic response of plastic track detectors to high-energy neutrons. Three types of plastic nuclear track detector (PNTD), Baryotrak made of pure CR-39, TD-1 made of CR-39 containing an antioxidant and TNF-1 made of a copolymer of CR-39/N-isopropylacrylamide, were exposed in quasi-monoenergetic neutron fields generated by p-Li reactions. The total efficiencies for TD-1 and TNF-1 were more than double and triple that of Baryotrak respectively. In addition, the species of particles were classitied into three groups, i.e. proton relatives, alpha particles and heavy ions, by analysing the etch-pit growth curve obtained by step-by-step etching. In a 65 MeV neutron field about half of the tracks recorded in pure CR-39 were due to heavy ions, whereas the TNF-1 detector could effectively register the protons, accounting for 70% of the tracks. The results could be explained by the difference in the sensitivity to high-energy protons.  相似文献   

3.
The effect of gamma dose on the bulk-etch rate measurements for some gamma-irradiated polymeric nuclear track detectors was extensively studied. Various plastic samples of CR-39 allyl diglycol carbonate, Makrofol-E and Lexan polycarbonates were used and exposed to gamma doses up to 30.0 Mrad. The bulk-etch rate ratioV BD/V BO, i.e. the bulk-etch rate of irradiated samples to the unirradiated ones, was measured at the most recommended optimum etching conditions. Fading behaviour of irradiated CR-39 samples was also studied at room temperature and for a duration of up to 8 days. It was found that the etch-rate ratio for the CR-39 specimens was dose-dependent. In contrast, the polycarbonate samples showed an extremely weak response to gamma irradiation. The results of the present work reflected great evidence of the gamma dosimetric potential of CR-39 plastic detectors, which can indeed be recommended as gamma-dosimeters within the studied dose range.  相似文献   

4.
(6)LiF:Mg,Cu,P and (7)LiF:Mg,Cu,P glass-rod thermoluminescent dosemeters (TLDs) were used for measurements of out-of-field photon and neutron doses produced by Varian iX linear accelerator. Both TLDs were calibrated using 18-MV X-ray beam to investigate their dose-response sensitivity and linearity. CR-39 etch-track detectors (Luxel+, Landauer) were employed to provide neutron dose data to calibrate (6)LiF:Mg,Cu,P TLDs at various distances from the isocentre. With cadmium filters employed, slow neutrons (<0.5 eV) were distinguished from fast neutrons. The average in-air photon dose equivalents per monitor unit (MU) ranged from 1.5±0.4 to 215.5±94.6 μSv at 100 and 15 cm from the isocentre, respectively. Based on the cross-calibration factors obtained with CR-39 etch-track detectors, the average in-air fast neutron dose equivalents per MU range from 10.6±3.8 to 59.1±49.9 μSv at 100 and 15 cm from the isocentre, respectively. Contribution of thermal neutrons to total neutron dose equivalent was small: 3.1±7.2 μSv per MU at 15 cm from the isocentre.  相似文献   

5.
The ENEA fast neutron dosemeter is based on a planar PADC (poly allyl diglycol carbonate) placed in a polyethylene holder. The CR-39 (registered trademark of PPG Industries Inc.) material, produced by Intercast Europe S.p.A., has been used in the routine of the Individual Monitoring Service (IMS) since 1998. Since then, acceptance tests on average sheet background track density and sheet neutron sensitivity have been made on new batches as a quality control within a quality assurance programme of the IMS of ENEA-Institute for Radiation Protection (IRP). Dosemeters were irradiated with a 241Am-Be source at ENEA-IRP and processed through a chemical etching procedure (pre-etching with 40% KOH water solution 6.25 N and 60% ethyl alcohol at 70 degrees C followed by 12 h of etching in 6.25 N KOH water solution). In this paper we present the analysis of acceptance testing data for more than 30 sheets of CR-39 plastic produced in 1998, 1999 and 2000. Moreover, we compare the performance of sheets of CR-39 of standard composition with that of sheets of CR-39 with the addition of DOP (dioctylphthalate), in different concentrations, on the hasis of average background density, neutron sensitivity and background fluctuation that limit the lower detectable dose. This study demonstrates the need for acceptance tests to assure the quality of the dosimetric performance of these dosemeters, which is considerably dependent on the quality of the CR-39 plastic.  相似文献   

6.
Photoneutron spectra around the treatment bed of a Varian Clinac 2100C machine were measured using a Bonner sphere spectrometer. To overcome problems with pulse pile-up and detection of non-neutron-induced events, the active detector of thermal neutrons normally used at the centre of the spheres was replaced by a sandwich of four CR-39 track detectors interleaved with 10B radiators. Track densities measured for the CR-39 detectors in Bonner spheres were used for the unfolding of neutron spectra. Neutron fluence and ambient dose equivalent for the whole energy range and partial energy intervals were derived from the neutron spectra.  相似文献   

7.
Atomic force microscopy (AFM) has been applied to the analysis of CR-39 nuclear track detectors for high dose neutron dosimetry. As a feasible study to extract the neutron dose, we have employed a (239)Pu-Be neutron source with the traditional track density measurement of recoil proton etch pits from a high density polyethylene (CH(2)) radiator. After very short etching ( approximately 1 microm), etch pit densities were measured as a function of neutron fluence (neutron dose) up to 1.4 x 10(10) cm(-2) (6.6 Sv). Neutron sensitivity was also measured to be 6.6 x 10(-4). Maximum measurable neutron dose was estimated to be approximately 200 Sv by measuring the fraction of the total image area occupied by the etch pits.  相似文献   

8.
In order to evaluate the neutron doses around nuclear fissile objects, a comparative study has been made on several neutron dosemeters: bubble dosemeters, etched-track detectors (CR-39) and 3He-filled proportional counters used as dose-rate meters. The measurements were made on the ambient and the personal dose equivalents H*(10) and Hp(10). Results showed that several bubble dosemeters should have been used due to a low reproducibility in the measurements. A strong correlation with the neutron energy was also found, with about a 30% underestimation of Hp(10) for neutrons from the PuBe source, and about a 9% overestimation for neutrons from the 252Cf source. Measurements of the nuclear fissile objects were made using the CR-39 and the dose-rate meters. The CR-39 led to an underestimation of 30% with respect to the neutron dose-rate meter measurements. In addition, the MCNP calculation code was used in the different configurations.  相似文献   

9.
Progress report of the CR-39 neutron personal monitoring service at PSI   总被引:1,自引:0,他引:1  
At the Paul Scherrer Institute a personal neutron dosimetry system based on chemically etched CR-39 detectors and automatic track counting is in routine use since the beginning of 1998. The quality of the CR-39 detectors has always been a crucial aspect to maintain a trustable personal neutron dosimetry system. This paper summarises the 7 y experience in routine use. The effect of detector material defects which could lead to false positive neutron doses is described. The potentiality of improving the background statistics by extending the pre-etch time is investigated and involves as a drawback a quite lower sensitivity to thermal neutrons. Furthermore, the impact of small changes in the production process of the detectors on the response to fast and thermal neutrons is shown. For the personal dosimetry at CERN, a new dosimetry concept was launched by combining a CR-39 neutron dosemeter with a Direct-Ion Storage (DIS) dosemeter for photon and beta radiation. The usage period of the CR-39 dosemeters is prolonged now from 3 months up to 12 months. In this context, the long-term behaviour over 1 y of the background track density and the response to Am-Be are described.  相似文献   

10.
In an international collaboration, a long-term radon concentration survey was carried out in schools of Southern Serbia with radon detectors prepared, etched and read-out in Italy. In such surveys it is necessary to evaluate measurement precision in field conditions, and to check whether quality assurance protocols were effective in keeping uncertainties under control, despite the complex organisation of measurements. In the first stage of the survey, which involves only some of the total number of municipalities, paired detectors were exposed in each monitored room in order to experimentally assess measurement precision. Paired passive devices (containing CR-39 detectors) were exposed for two consecutive 6-month periods. Two different measurement systems were used to read out CR-39s of the first and second period, respectively. The median of the coefficient of variation (CV) of the measured exposures was 8 % for 232 paired devices of the first 6-month period and 4 % for 242 paired devices of the second 6-month period, respectively. This difference was mainly due to a different track count repeatability of the two read-out systems, which was 4 and 1 %, respectively, as the median value of CV of repeated countings. The in-field measured precision results are very similar to the precision assessed in calibration conditions and are much lower than the room-to-room variation of radon concentration in the monitored schools. Moreover, a quality assurance protocol was followed to reduce extra-exposures during detector transport from Rome to schools measured and back.  相似文献   

11.
The latest advances in the development of a fluorescent nuclear track detector (FNTD) for neutron and heavy charged particle dosimetry are described and compared with CR-39 plastic nuclear etched track detectors (PNTDs). The technique combines a new luminescent aluminium oxide single crystal detector (Al(2)O(3):C,Mg) with an imaging technique based on laser scanning and confocal fluorescence detection. Detection efficiency was obtained after irradiations with monoenergetic neutron and proton beams. Dose dependences were measured for different configurations of the detectors exposed in fast- and thermal-neutron fields. A specially developed image processing technique allows for fast fluorescent track identification and counting. The readout method is non-destructive, and detectors can be reused after thermal annealing.  相似文献   

12.
To study the radiation environment inside the International Space Station, solid state nuclear track detector stacks were used. Within the BRADOS experiments, Phase 1, seven stacks were exposed at different locations of the Russian segment 'Zvezda' for 248 days in 2001. It was supposed that the radiation field inside the ISS was composed from primary cosmic ray particles penetrating the wall of the ISS and secondaries, mainly neutrons induced by primaries in the wall and other structural materials surrounding the detectors. Based on the calibration made by utilising the high energy neutron reference field CERF at CERN (Geneva, Switzerland), the tracks induced by neutrons were separated from those induced by primary particles. Thus, the stacks, on one hand, provided the secondary neutron ambient dose equivalent. On the other hand, from the analysis of the rest of the tracks, the linear energy transfer spectra were computed and the flux and the dose of the primary particles were determined as shown in this paper.  相似文献   

13.
The Mir Orbital Station provided a unique platform on which to carry out a variety of space radiation dosimetry measurements. A number of experiments were conducted using a combination of passive detectors on the interior of the Mir during 1996-97. Thermoluminescent detectors were used to measure absorbed dose. CR-39 plastic nuclear track detectors were used to measure the LET spectra > or =5 keV.microm(-1). Results from TLDs and CR-39 PNTDs were combined to determine total dose and dose equivalent. Mean dose rate was found to decrease while mean dose equivalent rate and average quality factor increased with increasing shielding. Secondary particles from proton-induced target fragmentation interactions, not primary HZE particles, were found to be the largest contributor to the LET spectrum above 100 keV.microm(-1). During the 1997 measurements, mean quality factor was found to vary from 1.7 to 2.1 as a function of location within the Mir.  相似文献   

14.
The dose received by people exposed to indoor radon is mainly due to radon progeny. This fact points to the establishment of techniques that access either radon and progeny together, or only radon progeny concentration. In this work a low cost and easy to use methodology is presented to determine the total indoor alpha emission concentration. It is based on passive detection using LR-115 and CR-39 detectors, taking into account the plateout effect. A calibration of LR-115 track density response was done by indoor exposure in controlled environments and dwellings, places where 222Rn and progeny concentration were measured with CR-39. The calibration factor obtained showed great dependence on the ambient condition: (0.69 +/- 0.04) cm for controlled environments and (0.43 +/- 0.03) cm for dwellings.  相似文献   

15.
An indoor radon survey of a total of 77 dwellings randomly selected in 10 districts in Oke-Ogun area of Oyo state, South-western Nigeria was carried out using CR-39 detectors. The CR-39 detectors were placed in the bedrooms and living rooms and exposed for 6 months and then etched in NaOH 6.25 N solution at 90 °C for 3 h. Mean concentrations amount to 255 ± 47 and 259 ± 67 Bq m(-3) in the living rooms and bedrooms, respectively. The lowest radon concentration (77 ± 29 Bq m(-3)) was found in Igbeti, whereas the highest was found in Okeho (627 ± 125 Bq m(-3)). The annual exposure of dwellers was estimated to fall <10 mSv (6.4 and 6.5 mSv y(-1) n living rooms and bedrooms, respectively), which is the upper range of action levels recommended by the International Commission on Radiological Protection. The average excess lung cancer risk was estimated 24.8 and 25.2 per million person-years in both living rooms and bedrooms. It is believed that the high radon level in this part of the country may be attributed to its geographic location. The data presented here will serve as a baseline survey for radon concentration in dwellings in the area.  相似文献   

16.
A study of “plate-out” effects in CR-39 detectors in indoor environment was made. The detectors were exposed to airborne particles, settled down onto a surface placed at various distances from the detectors. The effect was estimated to be about 30% in indoor air.  相似文献   

17.
The measurements of high-energy and high dose mixed radiation from high-energy electron accelerator are carried out using a radiation damage monitor. It consists of two Radiation-Sensing Field-Effect Transistors (RADFETs) for total absorbed dose from mainly gamma ray and other charged particles and a Si PIN diode for neutron fluence. This is a part of the demagnetization study of rare earth permanent magnet irradiated by 2.5-GeV electron beam. The sensitivities of damage detectors are measured using 65-MeV quasi-monoenergic neutron, 14-MeV D-T neutron, (252)Cf neutron for Si PIN diode and (60)Co and (137)Cs gamma ray for RADFETs. Measured sensitivities are in acceptable range in the comparison of producer's proposed values. The dose and fluence measurements are carried out for the same target condition, Cu and Ta, as that for the demagnetization study. The 5 x 5 cm(2) cross-sectional and 5.5-cm-thick Pb target is also used for the general comparison with photoneutron yields. All measured dose and fluence are compared with the calculated results using the FLUKA code and agree well each other. The application of this kind of radiation damage monitor to high-level dosimetry at high-energy electron accelerator has been discussed.  相似文献   

18.
A phoswitch-type detector has been developed for monitoring neutron doses in high-energy accelerator facilities. The detector is composed of a liquid organic scintillator (BC501A) coupled with ZnS(Ag) sheets doped with 6Li. The dose from neutrons with energies above 1 MeV is evaluated from the light output spectrum of the BC501A by applying the G-function, which relates the spectrum to the neutron dose directly. The dose from lower energy neutrons, on the other hand, is estimated from the number of scintillations emitted from the ZnS(Ag) sheets. Characteristics of the phoswitch-type detector were studied experimentally in some neutron fields. It was found from the experiments that the detector has an excellent property of pulse-shape discrimination between the scintillations of BC501A and the ZnS(Ag) sheets. The experimental results also indicate that the detector is capable of reproducing doses from thermal neutrons as well as neutrons with energies from one to several tens of megaelectronvolts (MeV).  相似文献   

19.
A systematic analysis of the response of dichlorodifluoromethane superheated drop detectors was performed in the 46-133 MeV energy range. Experiments with quasi-monoenergetic neutron beams were performed at the Université Catholique de Leuvain-la-Neuve, Belgium and the Svedberg Laboratory, Sweden, while tests in a broad field were performed at CERN. To determine the response of the detectors to the high-energy beams, the spectra of incident neutrons were folded over functions modelled after the cross sections for the production of heavy ions from the detector elements. The cross sections for fluorine and chlorine were produced in this work by means of the Monte Carlo high-energy transport code HADRON based on the cascade exciton model of nuclear interactions. The new response data permit the interpretation of measurements at high-energy accelerators and on high-altitude commercial flights, where a 30-50% under-response had been consistently recorded with respect to neutron dose equivalent. The introduction of a 1 cm lead shell around the detectors effectively compensates most of the response defect.  相似文献   

20.
Investigation on bubble detectors started in China in 1989. Five types of bubble detectors have been developed, with LET thresholds ranging from 0.05 to 6.04 MeV mg(-1) cm(2) at 25 degrees C. The neutron response of bubble detectors made with freon-12 has been investigated with mono-energetic neutrons from 20 keV to 19 MeV. Its effective threshold energy for neutron detection is approximately 100 keV at 28 degrees C. The response above this threshold is approximately 1.5 x 10(-4) (bubble cm(-2))/(n cm(-2)). Bubble detectors are unique not only for neutron dosimetry but also for monitoring and identifying high-energy heavy ions such as cosmic radiation in the space. High-energy heavy ion tracks in large size bubble detectors have been investigated in cooperation with scientists in Japan. The key parameter behind the thresholds of bubble detectors for track registration is the critical rate of energy loss. Three approaches to identify high-energy heavy ions with bubble detectors are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号